1
|
Tang X, Huang Z, Zhu G, Liang H, Sun H, Zhang Y, Tan Y, Cui M, Gong H, Wang X, Chen YH. Matching supplementary motor area-primary motor cortex paired transcranial magnetic stimulation improves motor dysfunction in Parkinson's disease: a single-center, double-blind randomized controlled clinical trial protocol. Front Aging Neurosci 2024; 16:1422535. [PMID: 39149144 PMCID: PMC11325724 DOI: 10.3389/fnagi.2024.1422535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background Non-invasive neuroregulation techniques have been demonstrated to improve certain motor symptoms in Parkinson's disease (PD). However, the currently employed regulatory techniques primarily concentrate on stimulating single target points, neglecting the functional regulation of networks and circuits. The supplementary motor area (SMA) has a significant value in motor control, and its functionality is often impaired in patients with PD. The matching SMA-primary motor cortex (M1) paired transcranial magnetic stimulation (TMS) treatment protocol, which benefits patients by modulating the sequential and functional connections between the SMA and M1, was elucidated in this study. Methods This was a single-center, double-blind, randomized controlled clinical trial. We recruited 78 subjects and allocated them in a 1:1 ratio by stratified randomization into the paired stimulation (n = 39) and conventional stimulation groups (n = 39). Each patient underwent 3 weeks of matching SMA-M1 paired TMS or sham-paired stimulation. The subjects were evaluated before treatment initiation, 3 weeks into the intervention, and 3 months after the cessation of therapy. The primary outcome measure in this study was the Unified Parkinson's Disease Rating Scale III, and the secondary outcome measures included non-motor functional assessment, quality of life (Parkinson's Disease Questionnaire-39), and objective assessments (electromyography and functional near-infrared spectroscopy). Discussion Clinical protocols aimed at single targets using non-invasive neuroregulation techniques often improve only one function. Emphasizing the circuit and network regulation in PD is important for enhancing the effectiveness of TMS rehabilitation. Pairing the regulation of cortical circuits may be a potential treatment method for PD. As a crucial node in motor control, the SMA has direct fiber connections with basal ganglia circuits and complex fiber connections with M1, which are responsible for motor execution. SMA regulation may indirectly regulate the function of basal ganglia circuits. Therefore, the developed cortical pairing stimulation pattern can reshape the control of information flow from the SMA to M1. The novel neuroregulation model designed for this study is based on the circuit mechanisms of PD and previous research results, with a scientific foundation and the potential to be a means of neuroregulation for PD.Clinical trial registration: ClinicalTrials.gov, identifier [ChiCTR2400083325].
Collapse
Affiliation(s)
- Xiaoshun Tang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhexue Huang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Guangyue Zhu
- Department of Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Sun
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yalin Tan
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Minglong Cui
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Haiyan Gong
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu-Hui Chen
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhao N, Tao J, Wong C, Wu JS, Liu J, Chen LD, Lee TMC, Xu Y, Chan CCH. Theta burst stimulation on the fronto-cerebellar connective network promotes cognitive processing speed in the simple cognitive task. Front Hum Neurosci 2024; 18:1387299. [PMID: 39314267 PMCID: PMC11417469 DOI: 10.3389/fnhum.2024.1387299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background The fronto-cerebellar functional network has been proposed to subserve cognitive processing speed. This study aims to elucidate how the long-range frontal-to-cerebellar effective connectivity contributes to faster speed. Methods In total, 60 healthy participants were randomly allocated to three five-daily sessions of transcranial magnetic stimulation conditions, namely intermittent theta-burst stimulation (iTBS, excitatory), continuous theta-burst stimulation (CTBS, inhibitory), or a sham condition. The sites of the stimulations were the right pre-supplementary motor area (RpSMA), medial cerebellar vermis VI (MCV6), and vertex, respectively. Performances in two reaction time tasks were recorded at different time points. Results Post-stimulation speeds revealed marginal decreases in the simple but not complex task. Nevertheless, participants in the excitatory RpSMA and inhibitory MCV6 conditions showed direct and negative path effects on faster speeds compared to the sham condition in the simple reaction time (SRT) task (β = -0.320, p = 0.045 and β = -0.414, p = 0.007, respectively). These path effects were not observed in the SDMT task. Discussion RpSMA and MCV6 were involved in promoting the path effects of faster reaction times on simple cognitive task. This study offers further evidence to support their roles within the long-range frontal-to-cerebellar connectivity subserving cognitive processing speed. The enhancement effects, however, are likely limited to simple rather than complex mental operations.
Collapse
Affiliation(s)
- Ning Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Clive Wong
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Jing-song Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanwen Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| |
Collapse
|
3
|
Dong K, Zhu X, Xiao W, Gan C, Luo Y, Jiang M, Liu H, Chen X. Comparative efficacy of transcranial magnetic stimulation on different targets in Parkinson's disease: A Bayesian network meta-analysis. Front Aging Neurosci 2023; 14:1073310. [PMID: 36688161 PMCID: PMC9845788 DOI: 10.3389/fnagi.2022.1073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background/Objective The efficacy of transcranial magnetic stimulation (TMS) on Parkinson's disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD. Methods A Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson's Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method. Results Thirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons. Conclusion Considering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).
Collapse
Affiliation(s)
- Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chu Gan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulu Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manying Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Guangzhou, China,Hanjun Liu,
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xi Chen,
| |
Collapse
|
4
|
Lammers-Lietz F, Zacharias N, Mörgeli R, Spies CD, Winterer G. Functional Connectivity of the Supplementary and Presupplementary Motor Areas in Postoperative Transition Between Stages of Frailty. J Gerontol A Biol Sci Med Sci 2022; 77:2464-2473. [PMID: 35040961 DOI: 10.1093/gerona/glac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Frailty is a multietiological geriatric syndrome of run-down physical reserves with high vulnerability to stressors. Transitions between physical robustness and frailty often occur in the context of medical interventions. Studies suggest that neurological disorders contribute to faster progression of frailty. In a previous cross-sectional study we found altered functional connectivity of supplementary motor area (SMA) in (pre)frail compared to robust patients. We analyzed functional connectivity of the SMA and presupplementary motor area (pre-SMA) in patients with postoperative transitions between physical robustness and stages of frailty. METHODS We investigated 120 cognitively healthy patients (49.2% robust, 47.5% prefrail, 3.3% frail, 37.5% female, median age 71 [65-87] years) undergoing elective surgery from the BioCog project, a multicentric prospective cohort study on postoperative delirium and cognitive dysfunction. Assessments took place 14 days before and 3 months after surgery, comprising assessments of a modified frailty phenotype according to Fried and resting-state functional magnetic resonance imaging at 3 T. The associations between functional connectivity of the SMA and pre-SMA networks, preoperative frailty stages, and postoperative transitions were examined using mixed linear effects models. RESULTS Nineteen patients showed physical improvement after surgery, 24 patients progressed to (pre)frailty and in 77 patients no transition was observed. At follow-up, 57 (47.5%) patients were robust, 52 (43.3%) prefrail, and 11 (9.2%) frail. Lower functional connectivity in the pre-SMA network was associated with more unfavorable postoperative transition types. An exploratory analysis suggested that the association was restricted to patients who were prefrail at baseline. There was no association of transition type with SMA functional connectivity in the primary analysis. In an exploratory analysis, transition from prefrailty to robustness was associated with higher functional connectivity and progression in robust patients was associated with higher SMA network segregation. CONCLUSIONS Our findings implicate that dysfunctions of cortical networks involved in higher cognitive control of motion are associated with postoperative transitions between frailty stages. The pre-SMA may be a target for neurofeedback or brain stimulation in approaches to prevent frailty. Clinical Trials Registration Number: NCT02265263.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Rudolf Mörgeli
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
5
|
Hanoglu L, Toplutas E, Saricaoglu M, Velioglu HA, Yildiz S, Yulug B. Therapeutic Role of Repetitive Transcranial Magnetic Stimulation in Alzheimer’s and Parkinson’s Disease: Electroencephalography Microstate Correlates. Front Neurosci 2022; 16:798558. [PMID: 35250446 PMCID: PMC8889013 DOI: 10.3389/fnins.2022.798558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The microstate analysis is a method to convert the electrical potentials on the multi-channel electrode array to topographical electroencephalography (EEG) data. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive method that can modulate brain networks. This study explores the pathophysiological changes through microstate analysis in two different neurodegenerative diseases, Alzheimer’s (AD) and Parkinson’s disease (PD), characterized by motor and cognitive symptoms and analysis the effect of rTMS on the impaired cognitive and motor functions. Materials and Methods We included 18 AD, 8 PD patients, and 13 age-matched controls. For both groups, we applied 5 Hz rTMS on the left pre-SMA in PD patients while 20 Hz rTMS on the left lateral parietal region in AD patients. Each patient was re-evaluated 1 week after the end of the sessions, which included a detailed clinical evaluation and measurement of EEG microstates. Results At the baseline, the common findings between our AD and PD patients were altered microstate (MS) B, MS D durations and transition frequencies between MS A–MS B, MS C–MS D while global explained variance (GEV) ratio and the extent and frequency of occurrence of MS A, MS B, and MS D were separately altered in AD patients. Although no specific microstate parameter adequately differentiated between AD and PD patients, we observed significant changes in MS B and MS D parameters in PD patients. Further, we observed that Mini-Mental State Examination (MMSE) performances were associated with the transition frequencies between MS A–MS B and MS C–MS D and GEV ratio. After left parietal rTMS application, we have observed significantly increased visual memory recognition and clock drawing scores after left parietal rTMS application associated with improved microstate conditions prominent, especially in the mean duration of MS C in AD patients. Also, pre-SMA rTMS resulted in significant improvement in motor scores and frequency of transitions from MS D to MS C in PD patients. Conclusion This study shows that PD and AD can cause different and similar microstate changes that can be modulated through rTMS, suggesting the role of MS parameters and rTMS as a possible combination in monitoring the treatment effect in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
| | - Eren Toplutas
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- *Correspondence: Eren Toplutas,
| | - Mevhibe Saricaoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Sultan Yildiz
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey
- Program of Neuroscience Ph.D., Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| |
Collapse
|
6
|
Saricaoglu M, Hanoglu L, Toprak G, Yilmaz NH, Yulug B. The Multifactorial Role of Pre-supplementary Motor Area Stimulation in the Freezing of Gait: An Alternative Strategy to the Classical Drug-Target Approach. Endocr Metab Immune Disord Drug Targets 2021; 22:518-524. [PMID: 34649492 DOI: 10.2174/1871530321666211014170107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pre-supplementary motor area (Pre-SMA) plays a pivotal role in the control of voluntary motor control and freezing of gait (FOG) pathophysiological mechanism. Here, we aimed to modulate if the pre-SMA would have beneficial effects on motor and behavioural outcomes in freezing of gait. To test this hypothesis, we examined the left pre-SMA stimulating effect of repetitive Transcranial Magnetic Stimulation (rTMS) on motor, cognitive and behavioural parameters in Parkinson's patients with FOG. METHOD The study included 20 Parkinson's patients with FOG (3 females, 17 males) who received the left Pre-SMA rTMS procedure. The clinical assessments were performed on all patients at the baseline and the patients were re-evaluated under the same clinical conditions one week after the end of the sessions. RESULTS & DISCUSSION We found significant improvements in motor, cognitive and behavioural symptoms (p<0.05). The main finding of our study is that Pre-SMA is an attractive stimulation area leading to critical improvement of symptoms of Parkinson' s patients with FOG. CONCLUSION The high-frequency rTMS stimulation over the left preSMA has a restorative effect on the motor, cognitive and behavioural symptoms of Parkinson' s patients with FOG.
Collapse
Affiliation(s)
- Mevhibe Saricaoglu
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul. Turkey
| | - Lutfu Hanoglu
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul, Medipol University, Istanbul. Turkey
| | - Guven Toprak
- Neuroimaging and Neuromodulation Lab, Clinical Electrophysiology, REMER, Istanbul, Medipol University, Istanbul. Turkey
| | - Nesrin Helvaci Yilmaz
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul. Turkey
| | - Burak Yulug
- Department of Neurology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya/Antalya. Turkey
| |
Collapse
|
7
|
Godeiro C, França C, Carra RB, Saba F, Saba R, Maia D, Brandão P, Allam N, Rieder CRM, Freitas FC, Capato T, Spitz M, Faria DDD, Cordellini M, Veiga BAAG, Rocha MSG, Maciel R, Melo LBD, Möller PDS, R R Júnior M, Fornari LHT, Mantese CE, Barbosa ER, Munhoz RP, Coletta MVD, Cury RG. Use of non-invasive stimulation in movement disorders: a critical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:630-646. [PMID: 34468499 DOI: 10.1590/0004-282x-anp-2020-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noninvasive stimulation has been widely used in the past 30 years to study and treat a large number of neurological diseases, including movement disorders. OBJECTIVE In this critical review, we illustrate the rationale for use of these techniques in movement disorders and summarize the best medical evidence based on the main clinical trials performed to date. METHODS A nationally representative group of experts performed a comprehensive review of the literature in order to analyze the key clinical decision-making factors driving transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in movement disorders. Classes of evidence and recommendations were described for each disease. RESULTS Despite unavoidable heterogeneities and low effect size, TMS is likely to be effective for treating motor symptoms and depression in Parkinson's disease (PD). The efficacy in other movement disorders is unclear. TMS is possibly effective for focal hand dystonia, essential tremor and cerebellar ataxia. Additionally, it is likely to be ineffective in reducing tics in Tourette syndrome. Lastly, tDCS is likely to be effective in improving gait in PD. CONCLUSIONS There is encouraging evidence for the use of noninvasive stimulation on a subset of symptoms in selected movement disorders, although the means to optimize protocols for improving positive outcomes in routine clinical practice remain undetermined. Similarly, the best stimulation paradigms and responder profile need to be investigated in large clinical trials with established therapeutic and assessment paradigms that could also allow genuine long-term benefits to be determined.
Collapse
Affiliation(s)
- Clecio Godeiro
- Universidade Federal do Rio Grande do Norte, Departamento de Medicina Integrada, Natal RN, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Felipe Saba
- Universidade Estadual de Campinas, São Paulo SP, Brazil
| | - Roberta Saba
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Débora Maia
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Carlos R M Rieder
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Tamine Capato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, Netherlands
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Unidade de Distúrbios do Movimento, Rio de Janeiro RJ, Brazil
| | - Danilo Donizete de Faria
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | | | | | - Maria Sheila G Rocha
- Hospital Santa Marcelina, Departamento de Neurologia e Neurocirurgia Funcional, São Paulo SP, Brazil
| | - Ricardo Maciel
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Lucio B De Melo
- Universidade Estadual de Londrina, Serviço de Neurologia, Londrina PR, Brazil
| | - Patricia D S Möller
- Hospital da Criança de Brasília José Alencar, Unidade Pediátrica de Distúrbios do Movimento, Brasília DF, Brazil
| | - Magno R R Júnior
- Universidade Federal do Maranhão, Hospital Universitário, São Luís MA, Brazil
| | - Luís H T Fornari
- Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Carlos E Mantese
- Hospital Mãe de Deus, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital - UHN, Division of Neurology, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto ON, Canada.,Krembil Brain Institute, Toronto ON, Canada
| | | | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
8
|
Grassi G, Albani G, Terenzi F, Razzolini L, Ramat S. New pharmacological and neuromodulation approaches for impulsive-compulsive behaviors in Parkinson's disease. Neurol Sci 2021; 42:2673-2682. [PMID: 33852081 DOI: 10.1007/s10072-021-05237-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION A significant proportion of patients with Parkinson's disease (PD) display a set of impulsive-compulsive behaviors at some point during the course of illness. These behaviors range from the so-called behavioral addictions to dopamine dysregulation syndrome, punding and hoarding disorders. These behaviors have been consistently linked to the use of dopaminergic medications used to treat PD motor symptoms (dopamine agonists, levodopa, and other agents) and less consistently to neuromodulation techniques such as deep brain stimulation (DBS). Since there are still no approved treatments for these conditions, their pharmacological management is still a big challenge for clinicians. METHODS We conducted an extensive review of current pharmacological and neuromodulation literature for the management of impulsive-compulsive disorders in PD patients. RESULTS Pharmacological treatment approaches for impulsive-compulsive behaviors and DDS in PD patients include reduction of levodopa (LD), reduction/cessation of dopamine agonist (DA), and initiation of infusion therapies (apomorphine infusion and duodopa). Also, atomoxetine, a noradrenergic agent approved for the treatment of attention deficit hyperactivity disorder, showed some interesting preliminary results but there is still a lack of controlled longitudinal studies. Finally, while DBS effects on impulsive-compulsive disorders are still controversial, non-invasive techniques (such as transcranial magnetic stimulation and transcranial direct current stimulation) could have a potential positive effect but, again, there is still a lack of controlled trials. CONCLUSION Managing impulsivity and compulsivity in PD patients is still a non-evidence-based challenge for clinicians. Controlled trials on promising approaches such as atomoxetine and non-invasive neuromodulation techniques are needed.
Collapse
Affiliation(s)
- Giacomo Grassi
- Brain Center Firenze, Viale Belfiore 36, 5014, Florence, Italy.
| | | | | | - Lorenzo Razzolini
- Brain Center Firenze, Viale Belfiore 36, 5014, Florence, Italy.,University of Florence, Florence, Italy
| | | |
Collapse
|