1
|
Delprete C, Incensi A, Furia A, Bari R, Liguori R, Donadio V. Evaluation of 6 monoclonal antibodies against Ser129-phosphorylated α-synuclein: Critical role of proteinase K antigen retrieval and superior sensitivity of the D1R1R clone in human skin biopsies. J Neuropathol Exp Neurol 2025:nlaf036. [PMID: 40261899 DOI: 10.1093/jnen/nlaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
α-Synuclein is an essential component of synucleinopathies including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy (MSA). Misfolded-α-synuclein inclusions that contain high levels of Serine-129 phosphorylated (pS129-α-syn) are key diagnostic markers. Skin biopsies are a promising peripheral tissue for in vivo detection of aggregates using immunofluorescence staining. Several primary antibodies target pS129-α-syn but their diagnostic reliability remains uncertain. Common practice relies on clones EP1536Y and 81A without antigen retrieval; however, recent findings have underscored the need to validate additional methodologies and alternative clones. We compared the diagnostic accuracy of the standard protocol, alongside formic acid and proteinase K (PK) antigen retrieval to evaluate 4 additional monoclonal antibodies (J18, BBF19, pSyn#64, and D1R1R) in a cohort of 43 confirmed synucleinopathy patients (7 with MSA) and 33 healthy controls. The results showed that PK increased the detection rates for EP1536Y, 81A, and D1R1R, with D1R1R outperforming the others in sensitivity. J18, BBF19, and pSyn#64 exhibited insufficient specificity, limiting their clinical applicability. The improved accuracy with PK treatment and the promising performance of D1R1R mark critical advancements for reliable diagnosis, highlighting the importance of optimizing protocols and validating antibodies for dependable detection of pathological aggregates in skin biopsies.
Collapse
Affiliation(s)
- Cecilia Delprete
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
| | - Alex Incensi
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
| | - Alessandro Furia
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Riccardo Bari
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, Neuromuscular and Neuroimmunology Unit, Bellaria Hospital, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Sarriés-Serrano U, Miquel-Rio L, Santana N, Paz V, Sancho-Alonso M, Callado LF, Meana JJ, Bortolozzi A. Impaired unfolded protein response, BDNF and synuclein markers in postmortem dorsolateral prefrontal cortex and caudate nucleus of patients with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111299. [PMID: 40015617 DOI: 10.1016/j.pnpbp.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Major depressive disorder (MDD) is characterized by significant impairment in social, emotional, and cognitive functioning. Its precise pathophysiology remains poorly understood. Alterations in protein homeostasis and some misfolded proteins have been identified within the brains of patients diagnosed with neuropsychiatric disorders. In contrast to neurodegenerative processes such as Parkinson's disease (PD), where the accumulation of aggregated α-synuclein (α-Syn) protein is a primary cause of significant neuronal loss, altered proteostasis in MDD may result in loss-of-function effects by modifying synaptic neuroplasticity. Moreover, aberrant activation of endoplasmic reticulum (ER) pathways may intensify the pathological alterations due to altered proteostasis. In this study, dorsolateral prefrontal cortex (dlPFC) and caudate nucleus from MDD patients and non-psychiatric controls were used. Postmortem samples of same brain areas from PD patients (Braak 2-3 and 5-6) and controls were also included. Protein levels of ER and unfolded protein response (UPR), synucleins (α-, β- and γ-Syn), and brain-derived neurotrophic factor (BDNF) were measured by Western-Blot. Phospho-eIF2α/eIF2α ratio was increased in the dlPFC and caudate nucleus of MDD and PD patients compared to their respective controls. Brain area-dependent changes in BiP and GRP94 levels were also found. We further detected accumulation of immature BDNF precursors and opposite changes in α- and β-Syn levels in the dlPFC of MDD and PD patients compared to controls. Our findings suggest that alterations in proteostasis contribute to the pathophysiology of MDD, as previously described in PD. A deeper understanding of the pathways involved will identify other candidate proteins and new targets with therapeutic potential.
Collapse
Affiliation(s)
- Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Noemí Santana
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis F Callado
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - J Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Nielsen J, Lauritsen J, Pedersen JN, Nowak JS, Bendtsen MK, Kleijwegt G, Lusser K, Pitarch LC, Moreno JV, Schneider MM, Krainer G, Goksøyr L, Khalifé P, Kaalund SS, Aznar S, Kjærgaard M, Sereikaité V, Strømgaard K, Knowles TPJ, Nielsen MA, Sander AF, Romero-Ramos M, Otzen DE. Molecular properties and diagnostic potential of monoclonal antibodies targeting cytotoxic α-synuclein oligomers. NPJ Parkinsons Dis 2024; 10:139. [PMID: 39075088 PMCID: PMC11286781 DOI: 10.1038/s41531-024-00747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
α-Synuclein (α-syn) accumulates as insoluble amyloid but also forms soluble α-syn oligomers (αSOs), thought to be even more cytotoxic than fibrils. To detect and block the unwanted activities of these αSOs, we have raised 30 monoclonal antibodies (mAbs) against different forms of αSOs, ranging from unmodified αSOs to species stabilized by lipid peroxidation products and polyphenols, αSOs formed by C-terminally truncated α-syn, and multivalent display of α-syn on capsid virus-like particles (cVLPs). While the mAbs generally show a preference for αSOs, they also bind fibrils, but to variable extents. Overall, we observe great diversity in the mAbs' relative affinities for monomers and αSOs, varied requirements for the C-terminal extension of α-syn, and only a modest effect on α-syn fibrillation. Several mAbs show several orders of magnitude preference for αSOs over monomers in in-solution studies, while the commercial antibody MJF14 only bound 10-fold more strongly to αSOs than monomeric α-syn. Gratifyingly, seven mAbs almost completely block αSO permeabilization of membrane vesicles. Five selected mAbs identified α-syn-related pathologies like Lewy bodies (LBs) and Lewy Neurites, as well as Glial Cytoplasmic Inclusions in postmortem brains from people diagnosed for PD, dementia with LBs or multiple system atrophy, although to different extents. Three mAbs were particularly useful for pathological evaluation of postmortem brain human tissue, including early stages of PD. Although there was no straightforward connection between the mAbs' biophysical and immunohistochemical properties, it is encouraging that this comprehensive collection of mAbs able to recognize different aggregated α-syn species in vitro also holds diagnostic potential.
Collapse
Affiliation(s)
- Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Johanne Lauritsen
- DANDRITE & Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Jannik N Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Jan S Nowak
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Malthe K Bendtsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Giulia Kleijwegt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kaija Lusser
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Laia C Pitarch
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Julián V Moreno
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Louise Goksøyr
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul Khalifé
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Simone Kaalund
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaité
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
4
|
Ramalingam N, Haass C, Dettmer U. Physiological roles of α-synuclein serine-129 phosphorylation - not an oxymoron. Trends Neurosci 2024; 47:480-490. [PMID: 38862330 PMCID: PMC11999472 DOI: 10.1016/j.tins.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
α-Synuclein (αS) is an abundant presynaptic protein that regulates neurotransmission. It is also a key protein implicated in a broad class of neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD) and Lewy body dementia (LBD). Pathological αS deposits in these diseases, Lewy bodies (LBs)/neurites (LNs), contain about 90% of αS in its phospho-serine129 (pS129) form. Therefore, pS129 is widely used as a surrogate marker of pathology. However, recent findings demonstrate that pS129 is also physiologically triggered by neuronal activity to positively regulate synaptic transmission. In this opinion article, we contrast the literature on pathological and physiological pS129, with a special focus on the latter. We emphasize that pS129 is ambiguous and knowledge about the context is necessary to correctly interpret changes in pS129.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Otzen DE. Antibodies and α-synuclein: What to target against Parkinson's Disease? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140943. [PMID: 37783321 DOI: 10.1016/j.bbapap.2023.140943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023]
Abstract
Parkinson's Disease (PD) is strongly linked to the aggregation of the protein α-synuclein (α-syn), an intrinsically disordered protein. However, strategies to combat PD by targeting the aggregation of α-syn are challenged by the multiple types of aggregates formed both in vivo and in vitro, the potential influence of chemical modifications and the as yet unresolved question of which aggregate types (oligomeric or fibrillar) are most cytotoxic. Here I briefly review the social history of α-syn, the many efforts to raise antibodies against α-syn and the disappointing results of clinical trials based on such antibodies. Ultimately a thorough understanding of the molecular and mechanistic properties of mAbs towards aggregated species of α-syn is an essential prerequisite for any clinical trial, but this is missing in most cases. I highlight new microfluidic techniques which may address this need and call for a more concerted effort to standardize antibody studies as the basis to allow us to link molecular insights to clinical efficacy.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK - 8000, Aarhus, Denmark.
| |
Collapse
|
6
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
7
|
Hmila I, Sudhakaran IP, Ghanem SS, Vaikath NN, Poggiolini I, Abdesselem H, El-Agnaf OMA. Inhibition of α-Synuclein Seeding-Dependent Aggregation by ssDNA Aptamers Specific to C-Terminally Truncated α-Synuclein Fibrils. ACS Chem Neurosci 2022; 13:3330-3341. [PMID: 36348612 DOI: 10.1021/acschemneuro.2c00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuropathologically, Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the accumulation of insoluble aggregates of α-synuclein (α-syn) in the Lewy bodies (LBs). In addition to full-length α-syn fibrils, C-terminally truncated α-syn is also abundant in the LBs that acts as seeds and facilitates the aggregation of the full-length α-syn in vitro and in vivo and induces toxicity. Hence, identifying molecules that can inhibit the seeding activity of these truncated forms is of great importance. Here, we report the first in vitro selection of aptamers targeting the fibrillar forms of different C-terminally truncated α-syn using systematic evolution by an exponential enrichment method followed by quantitative high-throughput DNA sequencing. We identify a panel of aptamers that bound with high specificity to different truncated forms of α-syn fibrils with no cross-reactivity toward other amyloid fibrils. Interestingly, two of the aptamers (named Apt11 and Apt15) show higher affinity to most C-terminally truncated forms of α-syn fibrils with an evident inhibition of α-syn-seeded aggregation in vitro by Apt11. This inhibition is further confirmed by circular dichroism, Congo red binding assay, and electronic microscopy. Moreover, Apt11 is also found to reduce the insoluble phosphorylated form of α-syn at Ser-129 (pS129-α-syn) in the cell model and also can inhibit α-syn aggregation using RT-QuIC reactions seeded with brain homogenates extracted from patients affected by PD. The aptamers discovered in this study represent potential useful tools for research and diagnostics or therapy toward PD and DLB.
Collapse
Affiliation(s)
- Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Simona S Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Nishant N Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Ilaria Poggiolini
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Omar M A El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
8
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
9
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Creed RB, Memon AA, Komaragiri SP, Barodia SK, Goldberg MS. Analysis of hemisphere-dependent effects of unilateral intrastriatal injection of α-synuclein pre-formed fibrils on mitochondrial protein levels, dynamics, and function. Acta Neuropathol Commun 2022; 10:78. [PMID: 35606853 PMCID: PMC9125944 DOI: 10.1186/s40478-022-01374-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Genetic and neuropathological evidence strongly implicates aberrant forms of α-synuclein in neurodegeneration. Antibodies specific for α-synuclein phosphorylated at serine 129 (pS129) are selective for the pathological protein aggregates that are characteristic of Parkinson's disease (PD) and other synucleinopathies, such as dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the etiology of most synucleinopathies remains uncertain, a large body of evidence points to mitochondrial dysfunction. The recent development of animal models based on intracranial injection of α-synuclein pre-formed fibrils (PFFs) has provided a valuable experimental system in which to study the spread and neurotoxicity of α-synuclein aggregates, yet the effects of PFF-induced protein aggregates on mitochondrial function and dynamics have not been rigorously examined in vivo. To help fill this knowledge gap, we injected the striatum of mice unilaterally with well-characterized small length (< 30 nm) PFFs or monomeric α-synuclein control and measured the distribution and extent of pS129 α-synuclein-immunoreactive aggregates, the loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra, the abundance of mitochondrial proteins, and the activity of mitochondrial respiratory chain components at 3 months and 6 months post injection. Intrastriatal injection of small length PFFs, but not monomeric α-synuclein control, induced robust pS129 α-synuclein immunoreactive inclusions in the cortex, ventral midbrain, and striatum, as well as in rarely reported brain regions, such as the hippocampus, as early as 3 months post injection. Significant loss of nigral tyrosine hydroxylase-immunoreactive neurons was observed in the PFF-injected hemisphere at 3 months and 6 months post injection. The unilateral striatal injection of small length PFFs also caused hemisphere-dependent and treatment-dependent changes in the cortical levels of mitochondrial proteins such as VDAC1, COX-IV, and DRP-1, as well as functional changes in mitochondrial complex I activity in the contralateral striatum. Together, these data demonstrate that intrastriatal injection of mice with small length PFFs induces extensive bilateral protein aggregates, significant unilateral nigral cell loss, and altered contralateral levels of mitochondrial proteins and respiratory chain activity. Our data suggest this animal model may be useful for studying the role of mitochondrial dysfunction in α-synucleinopathies, for studying the hemisphere-dependent effects of α-synuclein aggregates, and for testing neuroprotective therapies that target mitochondrial dysfunction and protein aggregation.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Adeel A Memon
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Neuroengineering Ph.D. Program, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sindhu P Komaragiri
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sandeep K Barodia
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Megarity D, Vroman R, Kriek M, Downey P, Bushell TJ, Zagnoni M. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. LAB ON A CHIP 2022; 22:1989-2000. [PMID: 35466333 DOI: 10.1039/d2lc00115b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional in vitro models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex in vitro models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel in vitro studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex in vitro models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.
Collapse
Affiliation(s)
- D Megarity
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - R Vroman
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | | - P Downey
- UCB Biopharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - M Zagnoni
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| |
Collapse
|
12
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Pope ED, Cordes L, Shi J, Mari Z, Decourt B, Sabbagh MN. Dementia with Lewy bodies: emerging drug targets and therapeutics. Expert Opin Investig Drugs 2021; 30:603-609. [PMID: 33899637 DOI: 10.1080/13543784.2021.1916913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Dementia with Lewy bodies (DLB) is characterized by the toxic accumulation of α-synuclein protein inside neural cells; this results in neurodegeneration which is clinically accompanied by behavioral and psychological changes. DLB shares features with Parkinson's disease (PD) and Parkinson's disease dementia (PDD), but also overlaps neurochemically and pathologically with Alzheimer's disease. Symptomatic treatments for LBD differ in their effectiveness while disease-modifying and curative approaches are much needed.Areas covered: We explore emerging therapeutics for DLB through the lens of repurposing approved drugs and survey their potential for disease modifying actions in DLB. Given the complexity of DLB with multiple pathologies, potential therapeutic targets that could affect Lewy body pathology, or metabolism or neurotransmitters or immunomodulation were surveyed. We queried PubMed and ClinicalTrials.gov searches 2017-2020.Expert opinion: DLB is not simply aredux ofAD or PD; hence, treatments should not be exclusively duplicative ofAD or PD directed treatments. This opens amyriad of possibilities for therapeutic approaches that are disease specific or repurposed.
Collapse
Affiliation(s)
- Evans D Pope
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Laura Cordes
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Boris Decourt
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| | - Marwan Noel Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, Las Vegas, NV, USA
| |
Collapse
|
14
|
Fayyad M, Erskine D, Majbour NK, Vaikath NN, Ghanem SS, Sudhakaran IP, Abdesselem H, Lamprokostopoulou A, Vekrellis K, Morris CM, Attems J, El-Agnaf OMA. Investigating the presence of doubly phosphorylated α-synuclein at tyrosine 125 and serine 129 in idiopathic Lewy body diseases. Brain Pathol 2020; 30:831-843. [PMID: 32324926 PMCID: PMC7384146 DOI: 10.1111/bpa.12845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Aggregation of the protein α‐synuclein (α‐syn) into insoluble intracellular assemblies termed Lewy bodies (LBs) is thought to be a critical pathogenic event in LB diseases such as Parkinson’s disease and dementia with LBs. In LB diseases, the majority of α‐syn is phosphorylated at serine 129 (pS129), suggesting that this is an important disease‐related post‐translational modification (PTM). However, PTMs do not typically occur in isolation and phosphorylation at the proximal tyrosine 125 (pY125) residue has received considerable attention and has been inconsistently reported to be present in LBs. Furthermore, the proximity of Y125 to S129 means that some pS129 antibodies may have epitopes that include Y125, in which case phosphorylation of Y125 will impede recognition of α‐syn. This would potentially lead to underestimating LB pathology burdens if pY125 occurs alongside pS129. To address the apparent controversy in the literature regarding the detection of pY125, we investigated its presence in the LB pathology. We generated pS129 antibodies whose epitope includes or does not include Y125 and compared the extent of α‐syn pathology recognized in mouse models of α‐synucleinopathies, human brain tissue lysates and fixed post‐mortem brain tissues. Our study demonstrated no difference in α‐syn pathology recognized between pS129 antibodies, irrespective of whether Y125 was part of the epitope or not. Furthermore, evaluation with pY125 antibodies whose epitope does not include S129 demonstrated no labeling of LB pathology. This study reconciles disparate results in the literature and demonstrates pY125 is not a key component of LB pathology in murine models or human tissues in idiopathic LB diseases.
Collapse
Affiliation(s)
- Muneera Fayyad
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Simona S Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Indulekha P Sudhakaran
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari Abdesselem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | | | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Christopher M Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Omar M A El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar.,Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|