1
|
Zhang Y, Xiao Y, Zhu Y, Yan L, Cheng N, Wei Y, Zhang Y, Tian Y, Cao W, Yang J. GPR83 protects cochlear hair cells against ibrutinib-induced hearing loss through AKT signaling pathways. Front Med (Lausanne) 2025; 12:1579285. [PMID: 40248074 PMCID: PMC12003303 DOI: 10.3389/fmed.2025.1579285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Ibrutinib, widely used in leukemia treatment, has been implicated in sensorineural hearing loss; however, its underlying mechanisms remain unclear. Methods This study investigated the impact of ibrutinib on hearing using HEI-OC1 cells, cochlear explants and C57BL/6 J mice. We used RNA-sequences analysis to investigate the potential mechanisms of ibrutinib-induced ototoxicity. Mice received ibrutinib and auditory thresholds were assessed via auditory brainstem response testing; to assess the potential protective effects, we co-administered the caspase inhibitor Z-Val-Ala-Asp (OMe)-fluoromethylketone (Z-VAD-FMK) and monitored hearing. Results Z-VAD-FMK mitigated ibrutinib-induced hearing loss by inhibiting apoptosis in auditory cells. Ibrutinib exposure resulted in cochlear hair cell (HC) damage and subsequent hearing loss by inhibiting the protein kinase B and G protein-coupled receptor 83 (GPR83) pathways. RNA sequencing suggested that GPR83 protects HCs by modulating autophagy. Z-VAD-FMK application and GPR83 overexpression attenuated ibrutinib-induced cochlear HC apoptosis and auditory decline. Conclusion These findings confirm ibrutinib's ototoxicity and highlight the protective role of GPR83 in ibrutinib-induced hearing loss, supporting future clinical investigations into Z-VAD-FMK and GPR83 as interventions for ibrutinib or other chemotherapeutic drug-induced ototoxicity.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Yepes MF, Minesinger K, Raciti FM, Salazar MC, Rajguru SM. Pan-caspase inhibitor protects against noise-induced hearing loss in a rodent model. Front Neurosci 2025; 19:1497773. [PMID: 39995440 PMCID: PMC11847858 DOI: 10.3389/fnins.2025.1497773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Background Despite the high prevalence of noise-induced hearing loss (NIHL), no effective treatments exist currently. Underlying mechanisms behind NIHL include elevated reactive oxygen species and inflammation, all which ultimately lead to cellular apoptosis. Z-VAD-FMK, an apoptosis inhibitor, has demonstrated protective effects against cochlear hair cells exposed to ototoxic agents; however, its potential for treating NIHL remains unexplored. This study assessed the efficacy of Z-VAD-FMK as a therapeutic for noise-induced cochlear injury in a rodent model. Methods Rodents were assigned to one of four groups: (1) unexposed, (2) noise-exposed, (3) noise + vehicle, and (4) noise + Z-VAD-FMK. Noise delivery consisted of 1 h of 110 dB continuous white-noise, with Z-VAD-FMK administered intraperitoneally 6 h afterward. Auditory brainstem responses (ABRs), cochlear hair cell density, and protein levels were evaluated post-interventions. Results Noise exposure caused a permanent threshold shift across all frequencies, with minimal recovery by day 28. However, post-exposure treatment with Z-VAD-FMK significantly mitigated ABR threshold, amplitudes, and latencies shifts particularly at low and mid frequencies. Treatment rescued outer hair cells across middle and basal cochlear turns and reduced caspase-9 and IL-1β levels, as indicated by protein analysis. Conclusion Our findings indicate that a single intraperitoneal injection of Z-VAD-FMK can partially mitigate cochlear dysfunction induced by acoustic overexposure in a rodent model, highlighting its potential as a therapeutic intervention for NIHL.
Collapse
Affiliation(s)
- Maria Fernanda Yepes
- Department of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kayla Minesinger
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Federica M. Raciti
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria Camila Salazar
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suhrud M. Rajguru
- Department of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Zhang ZJ, Liu ZT, Huang YP, Nguyen W, Wang YX, Cheng L, Zhou H, Wen Y, Xiong L, Chen W. Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer. MATERIALS TODAY PHYSICS 2023; 36:101150. [DOI: 10.1016/j.mtphys.2023.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
4
|
Cai Q, Sun Z, Xu S, Jiao X, Guo S, Li Y, Wu H, Yu X. Disulfiram ameliorates ischemia/reperfusion-induced acute kidney injury by suppressing the caspase-11-GSDMD pathway. Ren Fail 2022; 44:1169-1181. [PMID: 35837696 PMCID: PMC9291718 DOI: 10.1080/0886022x.2022.2098764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Acute kidney injury (AKI) is a serious condition with high mortality. The most common cause is kidney ischemia/reperfusion (IR) injury, which is thought to be closely related to pyroptosis. Disulfiram is a well-known alcohol abuse drug, and recent studies have shown its ability to mitigate pyroptosis in mouse macrophages. This study investigated whether disulfiram could improve IR-induced AKI and elucidated the possible molecular mechanism. We generated an IR model in mouse kidneys and a hypoxia/reoxygenation (HR) injury model with murine tubular epithelial cells (MTECs). The results showed that IR caused renal dysfunction in mice and triggered pyroptosis in renal tubular epithelial cells, and disulfiram improved renal impairment after IR. The expression of proteins associated with the classical pyroptosis pathway (Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-related specific protein (ASC), caspase-1, N-GSDMD) and nonclassical pyroptosis pathway (caspase-11, N-GSDMD) were upregulated after IR. Disulfiram blocked the upregulation of nonclassical but not all classical pyroptosis pathway proteins (NLRP3 and ASC), suggesting that disulfiram might reduce pyroptosis by inhibiting the caspase-11-GSDMD pathway. In vitro, HR increased intracellular ROS levels, the positive rate of PI staining and LDH levels in MTECs, all of which were reversed by disulfiram pretreatment. Furthermore, we performed a computer simulation of the TIR domain of TLR4 using homology modeling and identified a small molecular binding energy between disulfiram and the TIR domain. We concluded that disulfiram might inhibit pyroptosis by antagonizing TLR4 and inhibiting the caspase-11-GSDMD pathway.
Collapse
Affiliation(s)
- Qiaoting Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Yingxiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
5
|
Fan Z, Ma H, Li Y, Wu Y, Wang J, Xiong L, Fang Z, Zhang X. Neuronal MD2 induces long-term mental impairments in septic mice by facilitating necroptosis and apoptosis. Front Pharmacol 2022; 13:884821. [PMID: 36016572 PMCID: PMC9396348 DOI: 10.3389/fphar.2022.884821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a complication of sepsis with high morbidity rates. Long-lasting mental health issues in patients with SAE result in a substantial decrease in quality of life. However, its underlying mechanism is unclear, and effective treatments are not available. In the current study, we explored the role of apoptosis and necroptosis related to mental dysfunction in sepsis. In a mouse model of sepsis constructed by cecal ligation and puncture (CLP), altered behavior was detected by the open field, elevated-plus maze and forced swimming tests on the fourteenth day. Moreover, apoptosis- and necroptosis-associated proteins and morphological changes were examined in the hippocampus of septic mice. Long-lasting depression-like behaviors were detected in the CLP mice, as well as significant increases in neuronal apoptosis and necroptosis. Importantly, we found that apoptosis and necroptosis were related according to Ramsay’s rule in the brains of the septic mice. Inhibiting myeloid differentiation factor 2 (MD2), the crosstalk mediator of apoptosis and necroptosis, in neurons effectively reduced neuronal loss and alleviated depression-like behaviors in the septic mice. These results suggest that neuronal death in the hippocampus contributes to the mental impairments in SAE and that inhibiting neuronal MD2 is a new strategy for treating mental health issues in sepsis by inhibiting necroptosis and apoptosis.
Collapse
Affiliation(s)
- Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Li
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - You Wu
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiajia Wang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lize Xiong
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zongping Fang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|