1
|
Xu Q, Jin L, Wang L, Tang Y, Wu H, Chen Q, Sun L. The role of gonadal hormones in regulating opioid antinociception. Ann Med 2024; 56:2329259. [PMID: 38738380 PMCID: PMC11095291 DOI: 10.1080/07853890.2024.2329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2024] [Indexed: 05/14/2024] Open
Abstract
Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin Jin
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LuYang Wang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - YingYing Tang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qing Chen
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LiHong Sun
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Bilel S, Azevedo Neto J, Tirri M, Corli G, Bassi M, Fantinati A, Serpelloni G, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo study of butyrylfentanyl and 4-fluorobutyrylfentanyl in female and male mice: Role of the CRF 1 receptor in cardiorespiratory impairment. Br J Pharmacol 2024. [PMID: 39367619 DOI: 10.1111/bph.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). EXPERIMENTAL APPROACH In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). KEY RESULTS Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. CONCLUSION AND IMPLICATIONS In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists.
Collapse
Affiliation(s)
- Sabrine Bilel
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Joaquim Azevedo Neto
- Section of Pharmacology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, Verona, Italy
- Department of Psychiatry, College of Medicine, Drug Policy Institute, University of Florida, Gainesville, Florida, USA
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Claudio Trapella
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Center of Gender Medicine, University of Ferrara, Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
3
|
Rieder AS, Ramires Júnior OV, Prauchner GRK, Wyse ATS. Effects of methylphenidate on mitochondrial dynamics and bioenergetics in the prefrontal cortex of juvenile rats are sex-dependent. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111057. [PMID: 38880464 DOI: 10.1016/j.pnpbp.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Methylphenidate (MPH) is a central nervous system stimulant drug and a first order prescription in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). Although MPH biochemistry in neurodevelopment is not completely understood, studies showed it alters energy metabolism in rat brains. ADHD prevalence during neurodevelopment is related to males and the investigation has been mainly done in these subjects, therefore, little is known about MPH action in females and, consequently, about sexual dimorphism. In the present study we evaluated markers of mitochondrial dynamics (DRP1 and MFN2, fission and fusion, respectively), biogenesis (mtTFA) and bioenergetics (respiratory chain complexes) in prefrontal cortex of male and female juvenile rats submitted to exposure to MPH to better understand MPH effect during postnatal neurodevelopment. ATP and oxidative stress levels were also evaluated. Wistar rats received intraperitoneal injection of MPH (2.0 mg/kg) or control (saline), once a day, from 15th to 45th day of age. Results showed that MPH increased DRP1 and decreased MFN2, as well as increased mtTFA in prefrontal cortex of male rats. In female, MPH decreased NRF1 and increased Parkin, which are mitochondrial regulatory proteins. Respiratory chain complexes (complex I, SDH, complexes III and IV), ATP production and oxidative stress parameters were altered and shown to be sex-dependent. Taken together, results suggest that chronic MPH exposure at an early age in healthy animals changes mitochondrial dynamics, biogenesis and bioenergetics differently depending on the sex of the subjects.
Collapse
Affiliation(s)
- Alessandra Schmitt Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Júnior
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Zhu X, Chen X, Zheng X, Lyu H, Chen J, Yan A, Liu Q, Li S, Zhang Y, Wang T, Duan G, Huang H. Effects of single-use alfentanil versus propofol on cognitive functions after colonoscopy: A randomized controlled trial. Heliyon 2023; 9:e17061. [PMID: 37389042 PMCID: PMC10300329 DOI: 10.1016/j.heliyon.2023.e17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose Colonoscopy is often accompanied by short-term postoperative cognitive decline. We aimed to explore whether single-use alfentanil for patients undergoing elective colonoscopy could reduce cognitive impairment at discharge compared with propofol. Patients and methods 172 adult patients undergoing elective colonoscopy were randomized to receive intravenous propofol at 2 mg/kg (group P) or alfentanil at 10 μg/kg (group A); 40 healthy volunteers were included in the blank group. Cognitive function was considered the primary outcome and was measured using five neuropsychological tests before sedation and discharge. The z-score method was used to determine cognitive dysfunction according to z-score >1.96 in two types of neuropsychological tests. Other outcomes included discharge time, vital signs, associated adverse events during colonoscopy, and the satisfaction level of patients and endoscopic physicians. Results 164 patients (78 in group A and 86 in group P) completed the study protocol. At discharge, the incidence of cognitive dysfunction in group P was 23% and was significantly lower in the alfentanil group (2.5%), with a relative risk of 0.11 (95% confidence interval: 0.03-0.46, P < 0.001). The incidence of hypotension in group A was lower than that in group P (3.8% vs 22.1%, relative risk = 0.17 [95% confidence interval: 0.05-0.46, P = 0.001]), and the discharge time in group A was shorter than that in group P (5 [(Rutter and et al., 2016; Zhang and et al., 2013; Hirsh and et al., 2006; Zhou and et al., 2021; Singh and et al., 2008; Ko and et al., 2010; Sargin et al., 2019) 3-93-9 vs 13 [(Ekmekci and et al., 2017; Eberl and et al., 2012; Eberl and et al., 2014; N'Kaoua and et al., 2002; Chung et al., 1995; Berger and et al., 2019; Quan and et al., 2019; Deng and et al., 2021; Gualtieri and Johnson, 2006) 10-1810-18 min, P < 0.001). Conclusion For patients undergoing colonoscopy, single-use alfentanil causes less damage to postoperative cognitive function, less risk of hypotension, and shorter discharge time than propofol.
Collapse
Affiliation(s)
- Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuehan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Zheng
- Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Hongyao Lyu
- Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai Yan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiqi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yamei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Psychology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
7
|
Bates MLS, Arner JR, Curtis AL, Valentino R, Bhatnagar S. Sex-specific alterations in corticotropin-releasing factor regulation of coerulear-cortical network activity. Neuropharmacology 2023; 223:109317. [PMID: 36334761 DOI: 10.1016/j.neuropharm.2022.109317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The locus coeruleus (LC)-norepinephrine system is a stress responsive system that regulates arousal and cognitive functions through extensive projections, including to the prefrontal cortex. LC-cortical circuits are activated by stressors, and this activation is thought to contribute to stress-induced impairments in executive function. Because corticotropin-releasing factor (CRF) is a mediator of stress-induced LC activation, we examined the effects of CRF administered into the LC of male and female rats on network activity of two functionally distinct regions of the PFC, the medial PFC (mPFC) and the orbitofrontal cortex (OFC). Network activity, measured as local field potentials, was recorded in awake animals before and after intra-LC infusion of aCSF or CRF (2 or 20 ng). CRF had qualitatively distinct effects on network activity in males and females with respect to dose, region and timecourse. CRF (20 ng) produced a prominent theta oscillation (7-9 Hz) selectively in female rats shortly after LC infusion and 20 min later. In contrast, in male rats, CRF (2 and 20 ng) decreased the amplitude of power in the 4-6 Hz range in the mPFC 10 min after injection. Lastly, CRF (20 ng) increased mPFC-OFC coherence in females and decreased mPFC-OFC coherence in males. In sum, these results show sex differences in CRF modulation of the LC-norepinephrine system that regulates prefrontal cortical networks, which may underlie sex differences in cognitive and behavioral responses to stress.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychology, California State University, Chico, 400 W. First St, Chico, CA, 95929, USA
| | - Jay R Arner
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Andre L Curtis
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Rita Valentino
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA; The Perelman School of Medicine, University of Pennsylvania, USA
| | - Seema Bhatnagar
- Division of Stress Neurobiology, Department of Anesthesiology and Critical Care, Abramson Research Center, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA; The Perelman School of Medicine, University of Pennsylvania, USA.
| |
Collapse
|
8
|
Li X, Kshatriya D, Bello NT. Weight-gain propensity and morphine withdrawal alters locomotor behavior and regional norepinephrine-related gene expression in male and female mice. Pharmacol Biochem Behav 2022; 213:173329. [PMID: 35007656 DOI: 10.1016/j.pbb.2022.173329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Interactions between obesity and opioid use are poorly understood. The objective of this study was to determine whether phenotypic differences in diet-induced weight gain altered morphine withdrawal responses. Male and female C57BL/6J mice were characterized as obese prone (OP) or obese resistant (OR) based on median split in body weights following exposure to high-fat diet (45% fat). After classification into OP or OR, all mice were fed a low-fat diet (10% fat) for the remainder of the study (≥5 weeks) to remain weight matched. Mice were treated with a 7-day escalating dosing scheme of morphine (20-100 mg/kg; IP) or saline and underwent a spontaneous withdrawal. Morphine-induced weight loss was restored by withdrawal day 7. On withdrawal day 8, male OP demonstrated less total time mobile in the open field test (OFT). In females, OR-morphine traveled less distance than OR-saline, and OR-morphine spent less time mobile compared with all other groups in the OFT. Female OP also increased time spent in the center of the apparatus, regardless of treatment. On withdrawal day 8, relative gene expression was measured by qPCR. For males, expression of dopamine beta-hydroxylase (dbh), alpha-adrenergic receptor 2 a (adra2a), and orexin receptor 1 (orx1) were increased in the locus coeruleus (LC) region of OP mice, regardless of treatment. In comparison, in females, dbh and adra2a were decreased in the LC region of OP mice, regardless of treatment. Also, in the LC region of females, OP-morphine had lower expression of alpha-adrenergic receptor 1 a (adra1a) than OR-morphine and OP-saline. In the hypothalamic paraventricular nucleus (PVN) of females, adra2a was increased in OP-morphine compared with OP-saline and OR-morphine. Our findings suggest morphine withdrawal responses and regional expression of noradrenergic-related genes are differentially influenced by weight gain propensity.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Animal Sciences, Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA
| | - Dushyant Kshatriya
- Department of Animal Sciences, Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey New Brunswick, NJ, 08901, USA.
| |
Collapse
|