1
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Shah ZSA, Lomax E, Yang Y, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding activity of skin misfolded tau as a biomarker for tauopathies. Mol Neurodegener 2024; 19:92. [PMID: 39609917 PMCID: PMC11606191 DOI: 10.1186/s13024-024-00781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically hyperphosphorylated tau protein in the brain, leading to prion-like aggregation and propagation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. METHODS We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. RESULTS We found that the skin tau-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, the increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. CONCLUSIONS Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Ling Wu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Maria Gerasimenko
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tricia Gilliland
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Zahid Syed Ali Shah
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Evalynn Lomax
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yirong Yang
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Steven A Gunzler
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute of Neurology, Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, Rare Disease Center, Key Laboratory of Rare Neurological Diseases of Jiangxi Province Health Commission, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Kwon EH, Steininger J, Scherbaum R, Gold R, Pitarokoili K, Tönges L. Large-fiber neuropathy in Parkinson's disease: a narrative review. Neurol Res Pract 2024; 6:51. [PMID: 39465424 PMCID: PMC11514528 DOI: 10.1186/s42466-024-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Numerous studies reported a higher prevalence of polyneuropathy (PNP) in patients with Parkinson's disease (PD) compared to the general population. Importantly, PNP symptoms can aggravate both motor and sensory disturbances in PD patients and negatively impact the disease course. Recent analyses indicate distinct PNP patterns in PD. MAIN TEXT This review aims to provide an overview of the current insights into etiological factors, diagnostic methods, and management strategies of large fiber neuropathy in PD. Despite the higher prevalence, the causes of PNP in PD are still not fully understood. A genetic predisposition can underlie PNP onset in PD. Main research attention is focused on long-term levodopa exposure which is suggested to increase PNP risk by depletion of methylation cofactors such as vitamin B12 and accumulation of homocysteine that altogether can alter peripheral nerve homeostasis. Beyond a potential "iatrogenic" cause, alpha-synuclein deposition has been detected in sural nerve fibers that could contribute to peripheral neuronal degeneration as part of the systemic manifestation of PD. Whereas mild axonal sensory PNP predominates in PD, a considerable proportion of patients also show motor and upper limb nerve involvement. Intriguingly, a correlation between PNP severity and PD severity has been demonstrated. Therefore, PNP screening involving clinical and instrument-based assessments should be implemented in the clinical routine for early detection and monitoring. Given the etiological uncertainty, therapeutic or preventive options remain limited. Vitamin supplementation and use of catechol-O-methyltransferase-inhibitors can be taken into consideration. CONCLUSION PNP is increasingly recognized as a complicating comorbidity of PD patients. Long-term, large-scale prospective studies are required to elucidate the causative factors for the development and progression of PD-associated PNP to optimize treatment approaches. The overall systemic role of "idiopathic" PNP in PD and a putative association with the progression of neurodegeneration should also be investigated further.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| | - Julia Steininger
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Raphael Scherbaum
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr-University, Bochum, Germany
| |
Collapse
|
3
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
4
|
Wang Z, Wu L, Gerasimenko M, Gilliland T, Gunzler SA, Donadio V, Liguori R, Xu B, Zou WQ. Seeding Activity of Skin Misfolded Tau as a Biomarker for Tauopathies. RESEARCH SQUARE 2024:rs.3.rs-3968879. [PMID: 38496453 PMCID: PMC10942562 DOI: 10.21203/rs.3.rs-3968879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically phosphorylated tau protein in the brain, leading to prion-like propagation and aggregation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking. Methods We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls. Results We found that the skin prion-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used. Conclusions Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Case Western Reserve University School of Medicine
| | - Ling Wu
- North Carolina Central University
| | | | | | - Steven A Gunzler
- University Hospitals Cleveland Medical Center: UH Cleveland Medical Center
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bolgna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna: IRCCS Istituto Delle Scienze Neurologiche di Bologna
| | - Bin Xu
- North Carolina Central University
| | - Wen-Quan Zou
- First Affiliated Hospital of Nanchang University
| |
Collapse
|
5
|
Kaplan Algin A, Tomruk C, Gözde Aslan Ç, Şaban Akkurt S, Mehtap Çinar G, Ulukaya S, Uyanikgil Y, Akçay Y. Effects of ozone treatment to the levels of neurodegeneration biomarkers after rotenone induced rat model of Parkinson's disease. Neurosci Lett 2023; 814:137448. [PMID: 37597740 DOI: 10.1016/j.neulet.2023.137448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The study investigated the effects of ozone treatment on the neurodegeneration of stereotaxic rotenone-induced parkinson's disease (PD) model. The model was confirmed using the apomorphine rotation test. α-synuclein, amyloid-β, Tau, phosphorylated Tau, as well as tyrosine hydroxylase(+), nNOS(+), and glial cell counts were used to evaluate neurodegeneration in the substantia nigra pars compacta and ventral tegmental area. The experiment involved 48 Sprague-Dawley rats divided into four groups: dimethyl sulfoxide (DMSO), DMSO with ozone (O), DMSO/rotenone (R), and D/R/O. Ozone treatment significantly improved tissue α-synuclein level and TH+, nNOS+, and glial cell counts compared to the rotenone-only group. The study suggests that ozone treatment may have beneficial effects on PD biomarkers in the rotenone model. Further studies on ozone dosage, duration, and administration methods in humans could provide more evidence for its potential use in Parkinson's disease treatment.
Collapse
Affiliation(s)
- Asuman Kaplan Algin
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey; Integrative and Complementary Medical Clinic Muratpaşa, Antalya, Turkey
| | - Canberk Tomruk
- Ege University, Faculty of Medicine, Department of Histology and Embryology, Bornova, İzmir, Turkey
| | - Çiğdem Gözde Aslan
- Biruni University, Faculty of Medicine, Department of Medical Biochemistry, İstanbul, Turkey.
| | - Sinan Şaban Akkurt
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey; Clinic of Dr. Sinan Akkurt, Bornova, İzmir, Turkey
| | - Gülcihan Mehtap Çinar
- Ege University, Faculty of Medicine, Department of Pharmacology, Bornova, İzmir, Turkey
| | - Sezgin Ulukaya
- Ege University, Faculty of Medicine, Department of Anesthesia and Reanimation, Bornova, İzmir, Turkey
| | - Yiğit Uyanikgil
- Ege University, Faculty of Medicine, Department of Histology and Embryology, Bornova, İzmir, Turkey
| | - Yasemin Akçay
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, İzmir, Turkey
| |
Collapse
|
6
|
Cheshire WP, Koga S, Tipton PW, Sekiya H, Ross OA, Uitti RJ, Josephs KA, Dickson DW. Cancer in pathologically confirmed multiple system atrophy. Clin Auton Res 2023; 33:451-458. [PMID: 37178348 PMCID: PMC10529111 DOI: 10.1007/s10286-023-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE The aim of this study was to assess whether cancer occurs with increased frequency in multiple system atrophy (MSA). The pathological hallmark of MSA is glial cytoplasmic inclusions containing aggregated α-synuclein, and the related protein γ-synuclein correlates with invasive cancer. We investigated whether these two disorders are associated clinically. METHODS Medical records of 320 patients with pathologically confirmed MSA seen between 1998 and 2022 were reviewed. After excluding those with insufficient medical histories, the remaining 269 and an equal number of controls matched for age and sex were queried for personal and family histories of cancer recorded on standardized questionnaires and in clinical histories. Additionally, age-adjusted rates of breast cancer were compared with US population incidence data. RESULTS Of 269 cases in each group, 37 with MSA versus 45 of controls had a personal history of cancer. Reported cases of cancer in parents were 97 versus 104 and in siblings 31 versus 44 for MSA and controls, respectively. Of 134 female cases in each group, 14 MSA versus 10 controls had a personal history of breast cancer. The age-adjusted rate of breast cancer in MSA was 0.83%, as compared with 0.67% in controls and 2.0% in the US population. All comparisons were nonsignificant. CONCLUSION The evidence from this retrospective cohort found no significant clinical association of MSA with breast cancer or other cancers. These results do not exclude the possibility that knowledge about synuclein pathology at the molecular level in cancer may lead to future discoveries and potential therapeutic targets for MSA.
Collapse
Affiliation(s)
- William P Cheshire
- Division of Autonomic Disorders, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip W Tipton
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith A Josephs
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Jiang W, Cheng Y, Wang Y, Wu J, Rong Z, Sun L, Zhou Y, Zhang K. Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson's Disease: an Animal Model Study. Mol Neurobiol 2023:10.1007/s12035-023-03345-4. [PMID: 37148524 DOI: 10.1007/s12035-023-03345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson's disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson's correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Wu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Zhe Rong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Yan Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Zhong Z, Li J, Zhong J, Huang Y, Hu J, Zhang P, Zhang B, Jin Y, Luo W, Liu R, Zhang Y, Ling F. MAPKAPK2, a potential dynamic network biomarker of α-synuclein prior to its aggregation in PD patients. NPJ Parkinsons Dis 2023; 9:41. [PMID: 36927756 PMCID: PMC10020541 DOI: 10.1038/s41531-023-00479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
One of the important pathological features of Parkinson's disease (PD) is the pathological aggregation of α-synuclein (α-Syn) in the substantia nigra. Preventing the aggregation of α-Syn has become a potential strategy for treating PD. However, the molecular mechanism of α-Syn aggregation is unclear. In this study, using the dynamic network biomarker (DNB) method, we first identified the critical time point when α-Syn undergoes pathological aggregation based on a SH-SY5Y cell model and found that DNB genes encode transcription factors that regulated target genes that were differentially expressed. Interestingly, we found that these DNB genes and their neighbouring genes were significantly enriched in the cellular senescence pathway and thus proposed that the DNB genes HSF1 and MAPKAPK2 regulate the expression of the neighbouring gene SERPINE1. Notably, in Gene Expression Omnibus (GEO) data obtained from substantia nigra, prefrontal cortex and peripheral blood samples, the expression level of MAPKAPK2 was significantly higher in PD patients than in healthy people, suggesting that MAPKAPK2 has potential as an early diagnostic biomarker of diseases related to pathological aggregation of α-Syn, such as PD. These findings provide new insights into the mechanisms underlying the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Zhenggang Zhong
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabao Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Yilin Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baowen Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China.
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Zheng Y, Cai H, Zhao J, Yu Z, Feng T. Alpha-Synuclein species in oral mucosa as potential biomarkers for multiple system atrophy. Front Aging Neurosci 2022; 14:1010064. [PMID: 36304930 PMCID: PMC9592697 DOI: 10.3389/fnagi.2022.1010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The definitive diagnosis of Multiple system atrophy (MSA) requires the evidence of abnormal deposition of α-Synuclein (α-Syn) through brain pathology which is unable to achieve in vivo. Deposition of α-Syn is not limited to the central nervous system (CNS), but also extended to peripheral tissues. Detection of pathological α-Syn deposition in extracerebral tissues also contributes to the diagnosis of MSA. We recently reported the increased expressions of α-Syn, phosphorylated α-Synuclein at Ser129 (pS129), and α-Syn aggregates in oral mucosal cells of Parkinson’s disease (PD), which serve as potential biomarkers for PD. To date, little is known about the α-Syn expression pattern in oral mucosa of MSA which is also a synucleinopathy. Here, we intend to investigate whether abnormal α-Syn deposition occurs in oral mucosal cells of MSA, and to determine whether α-Syn, pS129, and α-Syn aggregates in oral mucosa are potential biomarkers for MSA. Methods The oral mucosal cells were collected by using cytobrush from 42 MSA patients (23 MSA-P and 19 MSA-C) and 47 age-matched healthy controls (HCs). Immunofluorescence analysis was used to investigate the presence of α-Syn, pS129, and α-Syn aggregates in the oral mucosal cells. Then, the concentrations of α-Syn species in oral mucosa samples were measured using electrochemiluminescence assays. Results Immunofluorescence images indicated elevated α-Syn, pS129, and α-Syn aggregates levels in oral mucosal cells of MSA than HCs. The concentrations of three α-Syn species were significantly higher in oral mucosal cells of MSA than HCs (α-Syn, p < 0.001; pS129, p = 0.042; α-Syn aggregates, p < 0.0001). In MSA patients, the oral mucosa α-Syn levels negatively correlated with disease duration (r = −0.398, p = 0.009). The area under curve (AUC) of receiver operating characteristic (ROC) analysis using an integrative model including age, gender, α-Syn, pS129, and α-Syn aggregates for MSA diagnosis was 0.825, with 73.8% sensitivity and 78.7% specificity. Conclusion The α-Syn levels in oral mucosal cells elevated in patients with MSA, which may be promising biomarkers for MSA.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajia Zhao
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
- *Correspondence: Zhenwei Yu,
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tao Feng,
| |
Collapse
|
10
|
Vacchi E, Lazzarini E, Pinton S, Chiaro G, Disanto G, Marchi F, Robert T, Staedler C, Galati S, Gobbi C, Barile L, Kaelin-Lang A, Melli G. Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies. Brain 2022; 145:2755-2768. [PMID: 35485527 DOI: 10.1093/brain/awac161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abnormal accumulation of microtubule-associated protein tau (τ) is a characteristic feature of atypical parkinsonisms with tauopathies such as Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD). However, pathological τ has also been observed in α-synucleinopathies like Parkinson's Disease (PD) and Multiple System Atrophy (MSA). Based on the involvement of peripheral nervous system in several neurodegenerative diseases, we characterized and compared τ expression in skin biopsies of patients clinically diagnosed with PD, MSA, PSP, CBD, and in healthy control subjects. In all groups, τ protein was detected along both somatosensory and autonomic nerve fibers in the epidermis and dermis by immunofluorescence. We found by western blot the presence of mainly two different bands at 55 and 70 KDa, co-migrating with 0N4R/1N3R and 2N4R isoforms, respectively. At the RNA level, the main transcript variants were 2N and 4R, and both resulted more expressed in PSP/CBD by real-time PCR. ELISA assay demonstrated significantly higher levels of total τ protein in skin lysates of PSP/CBD compared to the other groups. Multivariate regression analysis and ROC curves analysis of τ amount at both sites showed a clinical association with tauopathies diagnosis and high diagnostic value for PSP/CBD vs. PD (sensitivity 90%, specificity 69%) and PSP/CBD vs. MSA (sensitivity 90%, specificity 86%). τ protein increase correlated with cognitive impairment in PSP/CBD. This study is a comprehensive characterization of τ in the human cutaneous peripheral nervous system in physiologic and pathologic conditions. The differential expression of τ, both at transcript and protein levels, suggests that skin biopsy, an easily accessible and minimally invasive exam, can help in discriminating among different neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Vacchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sandra Pinton
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giacomo Chiaro
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giulio Disanto
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Francesco Marchi
- Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Thomas Robert
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Staedler
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Gobbi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucio Barile
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giorgia Melli
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|