1
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
2
|
Vartak A, Goyal D, Kumar H. Role of Axon Guidance Molecules in Ascending and Descending Paths in Spinal Cord Regeneration. Neuroscience 2023; 533:36-52. [PMID: 37704063 DOI: 10.1016/j.neuroscience.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Axon guidance molecules (AGM) are critical regulators of neural development and play a vital role in guiding axons to their target regions during spinal cord development. The correct wiring of neural circuits depends on these molecules' precise expression and function. Defects in axonal pathfinding, growth cone navigation, axonal branching, and synapse formation have far-reaching implications for neuronal circuit construction and function after CNS traumas, such as spinal cord injury (SCI), which affect the expression or activity of AGM. Ascending and descending paths in the spinal cord have been found to include many AGM, including Netrins, Slits, Semaphorins (Sema), Ephrins, and their receptors. In contrast to the repulsive signals like Slits and Semaphorins, which restrict axonal growth and guide axons away from unsuitable locations, Netrins are appealing guidance cues that encourage axonal growth and guidance. Defects in motor function and sensory processing can result from changes in the expression or activity of Ephrins or their receptors, which play an essential role in axonal guidance and synaptic plasticity in the spinal cord. Herein, we highlighted the expressions, functions, and mechanisms of AGM in ascending and descending spinal cord tracts, which can help us identify novel therapeutic targets to improve axonal regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Alisha Vartak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Divya Goyal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Okpechi SC, Yousefi H, Nguyen K, Cheng T, Alahari NV, Collins-Burow B, Burow ME, Alahari SK. Role of Nischarin in the pathology of diseases: a special emphasis on breast cancer. Oncogene 2022; 41:1079-1086. [PMID: 35064214 DOI: 10.1038/s41388-021-02150-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Nischarin has been demonstrated to have tumor suppressor functions. In this review, we comprehensively discuss up to date information about Nischarin. In addition, this paper aims to report the prognostic value, clinical relevance, and biological significance of the Nischarin gene (NISCH) in breast cancer (BCa) patients using the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA) datasets. We evaluated NISCH gene expression and its correlation to patient survival, baseline expression, and expression variation based on age groups, tumor stage, tumor size, tumor grade, and lymph node status in different subtypes of BCa. Since NISCH has been extensively reported to inhibit EMT and cancer cell migration, we also checked for the correlation between NISCH and EMT genes in addition to the correlation between NISCH and cell migration genes. Our results indicate that NISCH is a tumor suppressor that plays a critical role in BCa initiation, progression, and tumor development. We find that there is a higher level of NISCH expression in normal breast tissues compared to breast cancer tissues. Also, aggressive subtypes of breast cancers, such as the triple negative/basal category, have decreased levels of NISCH as the disease progresses. Finally, we report that NISCH is inversely correlated with many EMT and cancer cell migration genes in BCa. Interestingly, we identified a significant negative correlation between NISCH expression and its methylation in breast cancer patients. Overall, the goal of this report is to establish a strong clinical basis for further investigation into the cellular, molecular, and physiological roles of NISCH in BCa. Ultimately, NISCH gene expression might be clinically harnessed as a biomarker or predictor of invasiveness and metastasis in BCa.
Collapse
Affiliation(s)
- Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Cheng
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Bridgette Collins-Burow
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University School of Medicine and Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|