1
|
Song A, Cheng R, Jiang J, Qu H, Wu Z, Qian F, Shen S, Zhang L, Wang Z, Zhao W, Lou Y. Antidepressant-like effects of hyperoside on chronic stress-induced depressive-like behaviors in mice: Gut microbiota and short-chain fatty acids. J Affect Disord 2024; 354:356-367. [PMID: 38492650 DOI: 10.1016/j.jad.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The antidepressant effect of hyperoside (HYP), which is the main component of Hypericum perforatum, is not established. This study aimed to determine the effects of HYP on depression. METHODS The antidepressant-like effect of HYP was studied in mice induced by chronic restraint stress (CRS). The effects of HYP on behavior, inflammation, neurotransmitters, gut microbiota, and short-chain fatty acids (SCFAs) were studied in CRS mice. RESULTS HYP improved depressive-like behavior in mice induced by CRS. Nissl staining analysis showed that HYP improved neuronal damage in CRS mice. Western blot (WB) analysis showed that HYP increased the expression levels of BDNF and PSD95 in the hippocampus of CRS mice. The results of ELISA showed that HYP down-regulated the expression levels of IL-6, IL-1β, TNF-α, and CORT in the hippocampus, blood, and intestinal tissues of mice and up-regulated the expression levels of 5-HT and BDNF. Hematoxylin and eosin (HE) staining results indicate that HYP can improve the intestinal histopathological injury of CRS mice. The results of 16S rRNA demonstrated that HYP attenuated the dysbiosis of the gut microbiota of depressed mice, along with altering the concentration of SCFAs. LIMITATIONS In the present study, direct evidence that HYP improves depressive behaviors via gut microbiota and SCFAs is lacking, and only female mice were evaluated, which limits the understanding of the effects of HYP on both sexes. CONCLUSIONS HYP can improve CRS-induced depressive-like behaviors in mice, which is associated with regulating the gut microbiota and SCFAs concentration.
Collapse
Affiliation(s)
- Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ru Cheng
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Han Qu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyu Shen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China..
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China.
| |
Collapse
|
2
|
Seyrekoğlu F, Temiz H, Eser F, Yıldırım C. Optimization of Hypericum Perforatum Microencapsulation Process by Spray Drying Method. AAPS PharmSciTech 2024; 25:99. [PMID: 38714608 DOI: 10.1208/s12249-024-02820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 05/10/2024] Open
Abstract
Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 μg/g microcapsule and 15.09 μg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
| | - Hasan Temiz
- Faculty of Engineering, Department of Food Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Ferda Eser
- Suluova Vocational School, Amasya University, Amasya, Turkey.
| | - Cengiz Yıldırım
- Faculty of Education, Department of Mathematics and Science Education, Amasya University, Amasya, Turkey
| |
Collapse
|