1
|
Fürtig MA, Kovalenko Y, Kreutz R, Riemer TG. Calcium channel blockers and mental health: a comprehensive meta-analysis of psychiatric adverse events in double-blind randomized controlled trials. J Hypertens 2025; 43:1049-1056. [PMID: 40156332 DOI: 10.1097/hjh.0000000000004011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE L-type calcium channel blockers (CCBs) are pivotal in managing cardiovascular disorders, such as hypertension and angina pectoris. Their action on L-type calcium channels, which are not only integral to cardiovascular function but also present in the brain, prompts questions about potential effects on mental health. While previous cohort studies explored this association with mixed results, our study aims to build upon these findings by systematically investigating psychiatric adverse events (PAEs) reported in double-blind randomized controlled trials (RCTs). METHODS A systematic search identified double-blind RCTs reporting frequencies of PAEs during CCB therapy across different indications. Separate meta-analyses were conducted for dihydropyridine (DHP) and nondihydropyridine (non-DHP) CCBs against placebo and active controls. This study was registered on INPLASY (INPLASY202480075). RESULTS In 187 studies, encompassing 28,201 patients exposed to CCBs, several PAEs were reported, with the most common being depression, insomnia, somnolence, and agitation. Meta-analyses revealed no significant difference in PAE occurrence for CCBs vs. placebo, β-blockers, renin-angiotensin system blockers, and thiazide/thiazide-like diuretics (all P > 0.05). Restricting the analyses to cardiovascular studies, DHP CCBs were linked to lower risks of depression and insomnia compared to placebo [odds ratio (OR) 0.84, confidence interval (CI) 0.70-1.00 and OR 0.38, CI 0.15-0.99, both P = 0.05); however, these results may be artifacts and should be interpreted with caution. CONCLUSION Concerns about negative mental health effects of CCBs appear to be unwarranted and should not deter clinicians from prescribing them when indicated. A detected signal towards positive mental health benefits in cardiovascular patients warrants further investigation.
Collapse
Affiliation(s)
- Marc-Alexander Fürtig
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Yana Kovalenko
- Department of Psychology, Humboldt-Universität zu Berlin
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Thomas G Riemer
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Wei H, Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced depression and anxiety behavior in mice. RESEARCH SQUARE 2025:rs.3.rs-6254774. [PMID: 40235483 PMCID: PMC11998773 DOI: 10.21203/rs.3.rs-6254774/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles pretreatment to inhibit lipopolysaccharide (LPS)-induced pathological inflammation and synapse destruction and depressive and anxiety behavior in mice. B6SJLF1/J adult mice were pretreated with intranasal dantrolene nanoparticles (dantrolene: 5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with an intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression and anxiety were performed 24 hours after a one-time LPS injection. Biomarkers for pyroptosis-related inflammation cytokines (IL-1β and IL-18) in the blood and brain were measured using enzyme-linked immunosorbent assay (ELISA) and immunoblotting, respectively. The changes of primary proteins activation inflammatory pyroptosis (NLRP3: NLR family pyrin domain containing 3, Caspase-1, N-GSDMD: N terminal protein gasdermin D) and synapse proteins (PSD-95 and synpatin-1) in brains were measured using immunoblotting. Intranasal dantrolene nanoparticles robustly inhibited LPS-induced depression and anxiety behavior. Intranasal dantrolene nanoparticles significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood and brain and inhibited LPS-induced activation of pyroptosis. Intranasal dantrolene nanoparticles significantly ameliorated decrease of PSD-95 and synpatin-1 proteins in brains. Thus, intranasal dantrolene nanoparticles have demonstrated neuroprotection against inflammation-mediated depression and anxiety behaviors and should be studied further as a future effective drug treatment of major depression disorder or anxiety psychiatric disorder.
Collapse
|
3
|
Zhang W, Wang T, Li L, Xu J, Wang J, Wang G, Du J. The Role of Mitochondrial Dysfunction-Mediated Changes in Immune Cytokine Expression in the Pathophysiology and Treatment of Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04872-y. [PMID: 40163267 DOI: 10.1007/s12035-025-04872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Recent studies have demonstrated an association between major depressive disorder (MDD) and both mitochondrial dysfunction and alterations in pro-inflammatory cytokine expression, suggesting that such changes may be key drivers of MDD pathogenesis. Mechanistically, changes in mitochondrial function are related to endoplasmic reticulum stress, reactive oxygen species production, oxidative phosphorylation, apoptosis, and disrupted calcium ion homeostasis, all of which trigger the activation of signaling cascades that affect the expression of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferons. Certain factors present in the gut microbiota ecosystem can influence communication between microorganisms and the brain through the neuroendocrine, immune, and autonomic nervous systems, thereby altering mitochondrial function and cytokine production. This review article explores the means through which mitochondria regulate immune cytokine expression and the role of mitochondrial dysfunction in the pathogenesis and treatment of MDD to provide new perspectives for the diagnosis of this disease and the development of novel therapeutic interventions with greater efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Wanjun Zhang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jiyi Xu
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Du
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Liu J, Lu Y, Bhuiyan P, Gruttner J, Louis LS, Yi Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit lipopolysaccharide-induced helplessness and anxiety behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.06.611461. [PMID: 39314481 PMCID: PMC11418943 DOI: 10.1101/2024.09.06.611461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study investigates the therapeutic effectiveness of intranasal dantrolene nanoparticles pretreatment to inhibit lipopolysaccharide (LPS)-induced pathological inflammation and synapse destruction and depressive and anxiety behavior in mice. B6SJLF1/J adult mice were pretreated with intranasal dantrolene nanoparticles (dantrolene: 5mg/kg), daily, Monday to Friday, 5 days per week, for 4 weeks. Then, mice were treated with intraperitoneal injection of LPS (5mg/kg) for one time. Behavioral tests for depression and anxiety were performed 24 hours after a one-time LPS injection. Biomarkers for pyroptosis-related inflammation cytokines (IL-1β and IL-18) in blood and brains were measured using enzyme-linked immunosorbent assay (ELISA) and immunoblotting, respectively. The changes of primary proteins activation inflammatory pyroptosis (NLRP3: NLR family pyrin domain containing 3, Caspase-1, N-GSDMD: N terminal protein gasdermin D) and synapse proteins (PSD-95 and synpatin-1) in brains were measured using immunoblotting. Intranasal dantrolene nanoparticles robustly inhibited LPS-induced depression and anxiety behavior. Intranasal dantrolene nanoparticles significantly inhibited LPS-induced pathological elevation of IL-1β and IL-18 in the blood and brain and inhibited LPS induced activation of pyroptosis. Intranasal dantrolene nanoparticles significantly ameliorated decrease of PSD-95 and synpatin-1 proteins in brains. Thus, intranasal dantrolene nanoparticles has demonstrated neuroprotection against inflammation mediated depression and anxiety behaviors and should be studied furthermore as a future effective drug treatment of major depression disorder or anxiety psychiatric disorder.
Collapse
|
5
|
Bhuiyan P, Zhang W, Chae R, Kim K, St Louis L, Wang Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit inflammatory pyroptosis in 5XFAD mice brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625293. [PMID: 39651126 PMCID: PMC11623646 DOI: 10.1101/2024.11.25.625293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice. Methods 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment. Blood biomarkers function of liver (Alanine transaminase, ALT), kidney (Creatinine), and thyroid (TSH: Thyroid-stimulating hormone) were measured using ELISA. The changes of whole brain tissue proteins on Ca 2+ release channels on membrane of endoplasmic reticulum (type 2 ryanodine and type 1 InsP3 receptors, RyR-2 and InsP3R-1), lipid peroxidation byproduct malondialdehyde (MDA)-modified proteins, 4-HNE, pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, full length or N-terminal of Gasdermin D (GSDMD), cytotoxic (IL-1, IL-18, IL-6, TNF-a) and cytoprotective (IL-10) cytokines, astrogliosis (GFAP), microgliosis (IBA-1) and synapse proteins (PSD-95, Synapsin-1) were determined using immunoblotting. Body weights were monitored regularly. Results Intranasal dantrolene nanoparticles significantly inhibited the increase of RyR-2 and InsP3R-1 proteins, MDA-modified proteins, 4-NHE, pyroptosis regulatory proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD), cytotoxic cytokine (IL-1β, IL-18, IL-6, TNF-α), biomarkers for astrogliosis (GFAP) and microgliosis (IBA-1), and the decrease of cytoprotective cytokine (IL-10) and synaptic proteins (PSD-95, synpasin-1). Intranasal dantrolene nanoparticles for 12 weeks did not affect blood biomarkers for function of liver, kidney, and thyroid, not did it change body weight significantly. Conclusion Intranasal dantrolene nanoparticles significantly inhibit the increase of RyR-2 and InsP 3 R-1 Ca 2+ channel receptor proteins, ameliorate activation of the pyroptosis pathway and pathological inflammation, and the associated loss of synapse proteins. Intranasal dantrolene nanoparticles for three months did not affect liver, kidney and thyroid functions or cause other side effects.
Collapse
|
6
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Tang H, Wei W, Luo Y, Lu X, Chen J, Yang S, Wu F, Zhou H, Ma W, Yang X. P2X7 receptors: a bibliometric review from 2002 to 2023. Purinergic Signal 2024:10.1007/s11302-024-09996-9. [PMID: 38421486 DOI: 10.1007/s11302-024-09996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.
Collapse
Affiliation(s)
- Haiting Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Wei
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Luo
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaoqing Lu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Chen
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenqiao Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Wu
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haiyan Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenbin Ma
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Yang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
9
|
Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res 2024; 1822:148644. [PMID: 37871673 DOI: 10.1016/j.brainres.2023.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Depression holds the title of the largest contributor to worldwide disability, with the numbers expected to continue growing. Currently, there are neither reliable biomarkers for the diagnosis of the disease nor are the current medications sufficient for a lasting response in nearly half of patients. In this comprehensive review, we analyze the previously established pathophysiological models of the disease and how the interplay between NLRP3 inflammasome activation and depression might offer a unifying perspective. Adopting this inflammatory theory, we explain how NLRP3 inflammasome activation emerges as a pivotal contributor to depressive inflammation, substantiated by compelling evidence from both human studies and animal models. This inflammation is found in the central nervous system (CNS) neurons, astrocytes, and microglial cells. Remarkably, dysregulation of the NLRP3 inflammasome extends beyond the CNS boundaries and permeates into the enteric and peripheral immune systems, thereby altering the microbiota-gut-brain axis. The integrity of the brain blood barrier (BBB) and intestinal epithelial barrier (IEB) is also compromised by this inflammation. By emphasizing the central role of NLRP3 inflammasome activation in depression and its far-reaching implications, we go over each area with potential modulating mechanisms within the inflammasome pathway in hopes of finding new targets for more effective management of this debilitating condition.
Collapse
Affiliation(s)
- Ghazaleh Ghaffaripour Jahromi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
10
|
Lei D, Sun J, Xia J. Cuproptosis-related genes prediction feature and immune microenvironment in major depressive disorder. Heliyon 2023; 9:e18497. [PMID: 37576193 PMCID: PMC10415818 DOI: 10.1016/j.heliyon.2023.e18497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background Major depressive disorder (MDD) is a severe, unpredictable, ill-cured, relapsing neuropsychiatric disorder. A recently identified type of death called cuproptosis has been linked to a number of illnesses. However, the influence of cuproptosis-related genes in MDD has not been comprehensively assessed in prior study. Aim This investigation intends to shed light on the predictive value of cuproptosis-related genes for MDD and the immunological microenvironment. Methods GSE38206, GSE76826, GSE9653 databases were used to analyze cuproptosis regulators and immune characteristics. To find the genes that were differently expressed, weighted gene co-expression network analysis was employed. We calculated the effectiveness of the random forest model, generalized linear model, and limit gradient lifting to arrive at the best machine prediction model. Nomogram, calibration curve, and decision curve analysis were used to show the anticipated MDD's accuracy. Results This study found that there were activated immune responses and cuproptosis-related genes that were dysregulated in people with MDD compared to healthy controls. Considering the test performance of the learned model and validation on subsequent datasets, the RF model (including OSBPL8, VBP1, MTM1, ELK3, and SLC39A6) was considered to have the best discriminative performance. (AUC = 0.875). Conclusion Our study constructed a prediction model to predict MDD risk and clarified the potential connection between cuproptosis and MDD.
Collapse
Affiliation(s)
- Daoyun Lei
- Department of Anesthesiology, Zhongda Hospital Southeast University (Jiangbei), Nanjing, 210048 Jiangsu, China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, 210009 Jiangsu, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital Southeast University (Jiangbei), Nanjing, 210048 Jiangsu, China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, 210009 Jiangsu, China
| | - Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital Southeast University (Jiangbei), Nanjing, 210048 Jiangsu, China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, 210009 Jiangsu, China
| |
Collapse
|
11
|
Yang S, Yi L, Xia X, Chen X, Hou X, Zhang L, Yang F, Liao J, Han Z, Fu Y. Transcriptome comparative analysis of amygdala-hippocampus in depression: A rat model induced by chronic unpredictable mild stress (CUMS). J Affect Disord 2023; 334:258-270. [PMID: 37105469 DOI: 10.1016/j.jad.2023.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Depression is a common and complex mental disease, and its pathogenesis involves several brain regions. Abnormalities in the amygdala-hippocampal neural circuits have been shown to be involved in depression. However, the underlying molecular mechanisms remain unclear. METHODS A rat model was used to determine the transcriptome changes in the amygdala-hippocampal neural network under chronic unpredictable mild stress (CUMS). Depression-related modules in this neural network were identified using weighted gene co-expression network analysis (WGCNA). Difference and enrichment analyses were used to determine differential gene expression in the two brain regions. RESULTS The modules in the amygdala and hippocampus associated with depression-like behavior contained 363 and 225 genes, respectively. Forty-two differentially expressed genes were identified in the amygdala candidate module and 37 in the hippocampus. Enrichment analysis showed that candidate genes in the amygdala were associated with neuronal myelination and candidate genes in the hippocampus were associated with synaptic transmission. Finally, based on module hub gene statistics, differential gene expression, and protein-protein interaction networks, 11 central genes were found in the amygdala candidate module, and one central gene was found in the hippocampal module. LIMITATIONS Our study was based on a rat CUMS model. Further evidence is needed to prove that our results are applicable to patients with depression. CONCLUSION This study identified critical modules and central genes involved in the amygdala-hippocampal circuit in the context of depression, and may provide further understanding of the pathogenesis of depression and help identify potential targets for antidepressant therapy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Yi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Chen
- The First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Hou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Longjie Zhang
- Department of Pharmacy, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fang Yang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|