1
|
Fu H, Li J, Zhang C, Gao G, Ge Q, Guan X, Cui D. Pathological axonal enlargement in connection with amyloidosis, lysosome destabilization, and bleeding is a major defect in Alzheimer's disease. Neural Regen Res 2026; 21:790-799. [PMID: 40326989 DOI: 10.4103/nrr.nrr-d-24-01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00047/figure1/v/2025-05-05T160104Z/r/image-tiff Alzheimer's disease is a multi-amyloidosis disease characterized by amyloid-β deposits in brain blood vessels, microaneurysms, and senile plaques. How amyloid-β deposition affects axon pathology has not been examined extensively. We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer's disease patients. Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer's disease. On average, amyloid-β-positive axon diameters in Alzheimer's disease brains were 1.72 times those of control brain axons. Furthermore, axonal amyloidosis was associated with microtubule-associated protein 2 reduction, tau phosphorylation, lysosome destabilization, and several blood-related markers, such as apolipoprotein E, alpha-hemoglobin, glycosylated hemoglobin type A1C, and hemin. Lysosome destabilization in Alzheimer's disease was also clearly identified in the neuronal soma, where it was associated with the co-expression of amyloid-β, Cathepsin D, alpha-hemoglobin, actin alpha 2, and collagen type IV. This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability. Additionally, the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes. Furthermore, under rare conditions, axonal breakages were observed, which likely resulted in Wallerian degeneration. In summary, axonal enlargement associated with amyloidosis, micro-bleeding, and lysosome destabilization is a major defect in patients with Alzheimer's disease. This finding suggests that, in addition to the well-documented neural soma and synaptic damage, axonal damage is a key component of neuronal defects in Alzheimer's disease.
Collapse
Affiliation(s)
- Hualin Fu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jilong Li
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Ge
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Xinping Guan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- The Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease. Nat Cell Biol 2025; 27:619-632. [PMID: 40140603 PMCID: PMC11991917 DOI: 10.1038/s41556-025-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Ageing is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in the brains of patients with AD remain elusive. Here we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains ageing hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-tau and amyloid β, resembling those in APP mouse brains and the brains of patients with AD. Quantitative tNeuron proteomics identify ageing- and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Providing support for the centrality of lysosomal deficits in AD, compounds ameliorating lysosomal function reduce amyloid β deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of ageing and AD.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Qinotto Inc., San Carlos, CA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yohei Shibuya
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Moran-Losada
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research Inc. (PAVIR), Palo Alto, CA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
4
|
Pariary R, Shome G, Kalita S, Kalita S, Roy A, Harikishore A, Jana K, Senapati D, Mandal B, Mandal AK, Bhunia A. Peptide-Based Strategies: Combating Alzheimer's Amyloid β Aggregation through Ergonomic Design and Fibril Disruption. Biochemistry 2024; 63:2397-2413. [PMID: 39255071 DOI: 10.1021/acs.biochem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Amyloidosis of amyloid-β (Aβ) triggers a cascade of events, leading to oxidative damage and neuronal death. Therefore, inhibiting Aβ amyloidosis or disrupting the matured fibrils is the primary target to combat progressive Alzheimer's disease (AD) pathogenesis. Here, we undertake optimization strategies to improve the antiamyloid efficiency of our previously reported NF11 (NAVRWSLMRPF) peptide. Among the series of peptides tested, nontoxic and serum-stable peptide 1 or P1 containing an anthranilic acid residue shows immense potential in not only inhibiting the Aβ42 amyloid formation but also disrupting the mature Aβ42 fibrils into nontoxic small molecular weight soluble species. Our studies provide high-resolution characterization of the peptide's mechanism of action. With a binding affinity within the micromolar range for both the monomer and aggregated Aβ42, this α/β hybrid peptide can efficiently modulate Aβ amyloidosis while facilitating the clearance of toxic aggregates and enforcing protection from apoptosis. Thus, our studies highlight that incorporating a β-amino acid not only imparts protection from proteolytic degradation and improved stability but also functions effectively as a β breaker, redirecting the aggregation kinetics toward off-pathway fibrillation.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Sujan Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, Kamrup College Chamata, Nalbari 781306, India
| | - Sourav Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, North Gauhati College, North Guwahati 781031, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755, Singapore
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Atin Kumar Mandal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| |
Collapse
|
5
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Nutini A. Amyloid oligomers and their membrane toxicity - A perspective study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:9-20. [PMID: 38211711 DOI: 10.1016/j.pbiomolbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Amyloidosis is a condition involving a disparate group of pathologies characterized by the extracellular deposition of insoluble fibrils composed of broken-down proteins. These proteins can accumulate locally, causing peculiar symptoms, or in a widespread way, involving many organs and. causing severe systemic failure. The damage that is created is related not only to the accumulation of. amyloid fibrils but above all to the precursor oligomers of the fibrils that manage to enter the cell in a very particular way. This article analyzes the current state of research related to the entry of these oligomers into the cell membrane and the theories related to their toxicity. The paper proposed here not only aims to review the contents in the literature but also proposes a new vision of amyloid toxicity. that could occur in a multiphase process catalyzed by the cell membrane itself. In this process, the denaturation of the lipid bilayer is followed by the stabilization of a pore through energetically favorable self-assembly processes which are achieved through particular oligomeric structures.
Collapse
Affiliation(s)
- Alessandro Nutini
- Biology and Biomechanics Dept - Centro Studi Attività Motorie, Italy.
| |
Collapse
|
7
|
Karkisaval AG, Hassan R, Nguyen A, Balster B, Abedin F, Lal R, Tatulian SA. The structure of tyrosine-10 favors ionic conductance of Alzheimer's disease-associated full-length amyloid-β channels. Nat Commun 2024; 15:1296. [PMID: 38351257 PMCID: PMC10864385 DOI: 10.1038/s41467-023-43821-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/21/2023] [Indexed: 02/16/2024] Open
Abstract
Amyloid β (Aβ) ion channels destabilize cellular ionic homeostasis, which contributes to neurotoxicity in Alzheimer's disease. The relative roles of various Aβ isoforms are poorly understood. We use bilayer electrophysiology, AFM imaging, circular dichroism, FTIR and fluorescence spectroscopy to characterize channel activities of four most prevalent Aβ peptides, Aβ1-42, Aβ1-40, and their pyroglutamylated forms (AβpE3-42, AβpE3-40) and correlate them with the peptides' structural features. Solvent-induced fluorescence splitting of tyrosine-10 is discovered and used to assess the sequestration from the solvent and membrane insertion. Aβ1-42 effectively embeds in lipid membranes, contains large fraction of β-sheet in a β-barrel-like structure, forms multi-subunit pores in membranes, and displays well-defined ion channel features. In contrast, the other peptides are partially solvent-exposed, contain minimal β-sheet structure, form less-ordered assemblies, and produce irregular ionic currents. These findings illuminate the structural basis of Aβ neurotoxicity through membrane permeabilization and may help develop therapies that target Aβ-membrane interactions.
Collapse
Affiliation(s)
- Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rowan Hassan
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Andrew Nguyen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Balster
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Faisal Abedin
- Department of Physics, University of Central Florida, Orlando, FL, USA
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
8
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Molkov YI, Zaretskaia MV, Zaretsky DV. Towards the Integrative Theory of Alzheimer's Disease: Linking Molecular Mechanisms of Neurotoxicity, Beta-amyloid Biomarkers, and the Diagnosis. Curr Alzheimer Res 2023; 20:440-452. [PMID: 37605411 PMCID: PMC10790337 DOI: 10.2174/1567205020666230821141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION A major gap in amyloid-centric theories of Alzheimer's disease (AD) is that even though amyloid fibrils per se are not toxic in vitro, the diagnosis of AD clearly correlates with the density of beta-amyloid (Aβ) deposits. Based on our proposed amyloid degradation toxicity hypothesis, we developed a mathematical model explaining this discrepancy. It suggests that cytotoxicity depends on the cellular uptake of soluble Aβ rather than on the presence of amyloid aggregates. The dynamics of soluble beta-amyloid in the cerebrospinal fluid (CSF) and the density of Aβ deposits is described using a system of differential equations. In the model, cytotoxic damage is proportional to the cellular uptake of Aβ, while the probability of an AD diagnosis is defined by the Aβ cytotoxicity accumulated over the duration of the disease. After uptake, Aβ is concentrated intralysosomally, promoting the formation of fibrillation seeds inside cells. These seeds cannot be digested and are either accumulated intracellularly or exocytosed. Aβ starts aggregating on the extracellular seeds and, therefore, decreases in concentration in the interstitial fluid. The dependence of both Aβ toxicity and aggregation on the same process-cellular uptake of Aβ-explains the correlation between AD diagnosis and the density of amyloid aggregates in the brain. METHODS We tested the model using clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which included records of beta-amyloid concentration in the cerebrospinal fluid (CSF-Aβ42) and the density of beta-amyloid deposits measured using positron emission tomography (PET). The model predicts the probability of AD diagnosis as a function of CSF-Aβ42 and PET and fits the experimental data at the 95% confidence level. RESULTS Our study shows that existing clinical data allows for the inference of kinetic parameters describing beta-amyloid turnover and disease progression. Each combination of CSF-Aβ42 and PET values can be used to calculate the individual's cellular uptake rate, the effective disease duration, and the accumulated toxicity. We show that natural limitations on these parameters explain the characteristic distribution of the clinical dataset for these two biomarkers in the population. CONCLUSION The resulting mathematical model interprets the positive correlation between the density of Aβ deposits and the probability of an AD diagnosis without assuming any cytotoxicity of the aggregated beta-amyloid. To the best of our knowledge, this model is the first to mechanistically explain the negative correlation between the concentration of Aβ42 in the CSF and the probability of an AD diagnosis. Finally, based on the amyloid degradation toxicity hypothesis and the insights provided by mathematical modeling, we propose new pathophysiology-relevant biomarkers to diagnose and predict AD.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
10
|
Dai Y, Xie Z, Liang L. Pore Formation Mechanism of A-Beta Peptide on the Fluid Membrane: A Combined Coarse-Grained and All-Atomic Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123924. [PMID: 35745043 PMCID: PMC9231318 DOI: 10.3390/molecules27123924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
In Alzheimer’s disease, ion permeability through the ionic channel formed by Aβ peptides on cellular membranes appears to underlie neuronal cell death. An understanding of the formation mechanism of the toxic ionic channel by Aβ peptides is very important, but remains unclear. Our simulation results demonstrated the dynamics and mechanism of channel formation by Aβ1-28 peptides on the DPPC and POPC membrane by the coarse-grained method. The ionic channel formation is driven by the gyration of the radius and solvent accessible molecular surface area of Aβ1-28 peptides. The ionic channel formation mechanism was explored by the free energy profile based on the distribution of the gyration of the radius and solvent accessible molecular surface area of Aβ1-28 peptides on the fluid membrane. The stability and water permeability of the ionic channel formed by Aβ peptides was investigated by all-atomic model simulation. Our simulation showed that the ionic channel formed by Aβ1-28 peptides is very stable and has a good water permeability. This could help us to understand the pore formation mechanism by Aβ1-28 peptides on the fluidic membrane. It also provides us with a guideline by which to understand the toxicity of Aβ1-28 peptides’ pores to the cell.
Collapse
Affiliation(s)
- Yuxi Dai
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Zhexing Xie
- College of Accounting, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
- Correspondence:
| |
Collapse
|