1
|
Nejad SA, Rajizadeh MA, Shojaeepour S, Azizi S, Moradnejad O, Dehesh T, Akhgarandouz F, Sabzalizadeh M, Alifarsangi A. The age-dependent impacts of treadmill exercise on cognitive impairments by reducing inflammation and oxidative stress in the hippocampus of morphine-exposed rats: the role of SIRTs 3 &4 and BDNF. Biogerontology 2025; 26:113. [PMID: 40418392 DOI: 10.1007/s10522-025-10255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/09/2025] [Indexed: 05/27/2025]
Abstract
Morphine addiction has many side effects, such as cognitive disorders. On the other hand, old age alone is one of the risk factors for cognitive decline and can increase the risk of addiction. On the other hand, the positive effects of exercise as a non-pharmacological intervention on cognitive disorders have been shown through the increase of growth factors and synaptic proteins. This study will investigate the impacts of exercise on the consequences of morphine addiction in aged rats, relying on the role of oxidative and inflammatory factors as well as SIRT 3, SIRT 4, and BDNF. 56 male Wistar rats were allotted in 8 groups, 4 for young and 4 for old rats.The groups include 1. Control; 2. Exercise; 3. Morphine exposed; 4. Morphine exposed + Exercise.The rats in morphine-exposed groups received morphine for 21 days, and the rats performed treadmill exercises for 4 weeks. The behavioral tests included Morris water maze (MWM), Open field test (OFT), Elevated plus maze (EPM), and Novel object recognition test (NOR), which were done to evaluate cognitive function. The gene expression of TNF, IL-6, BDNF, SIRT 3, and SIRT 4 was measured in the hippocampus tissue by RT-PCR. Also, the levels of MDA, TAC, SOD and GPX were assessed using by related kits. Our results showed that morphine exposure in both young and old rats resulted in cognitive impairments and increased anxiety-like behaviors. Also, morphine exposure reduced BDNF, SIRT1, and SIRT4 and increased TNF and IL-6 gene expression in the hippocampus of rats. However, exercise could improve cognitive impairments and anxiety in both young and old rats and reduce TNF, IL-6, and MDA and elevation of BDNF, SIRT 3, and SIRT 4 gene expression and TAC, SOD, and GPX levels in the hippocampus tissue. Exercise could improve cognitive impairments following morphine exposure in young and old rats by reducing inflammation and oxidative stress and increasing expression of BDNF, SIRT 3, and SIRT 4.
Collapse
Affiliation(s)
- Saeedeh Ahmadi Nejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Shojaeepour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahrzad Azizi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Omid Moradnejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tania Dehesh
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Faezeh Akhgarandouz
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Atena Alifarsangi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Yi W, Sylvester E, Lian J, Deng C. The effects of risperidone and voluntary exercise intervention on synaptic plasticity gene expressions in the hippocampus and prefrontal cortex of juvenile female rats. Physiol Behav 2025; 294:114879. [PMID: 40096936 DOI: 10.1016/j.physbeh.2025.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Psychiatric disorders and antipsychotics are associated with impaired neuroplasticity, while physical exercise has been reported to enhance neuroplasticity and improve cognitive and affective processes. Therefore, this study hypothesizes that voluntary exercise can enhance synaptic plasticity in juvenile rats disrupted by risperidone, a commonly prescribed antipsychotic for pediatric patients. METHODS Thirty-two juvenile female rats were randomly assigned to Vehicle+Sedentary, Risperidone (0.9mg/kg; b.i.d)+Sedentary, Vehicle+Exercise (three hours daily access to running wheels), and Risperidone+Exercise groups for four week treatment. Brains were collected for further analysis. RESULTS In the hippocampus, the mRNA expressions of Bdnf, Ntrk2, and Grin2b were increased by risperidone and exercise intervention. Exercise upregulated expression of Grin1 and Grin2a. Syn1 and Syp mRNA expression were enhanced by exercise in the risperidone-treated group. The expression of both Mfn1 and Drp1 mRNA were decreased by risperidone-only treatment. In the prefrontal cortex, Bdnf and Dlg4 expression was upregulated by exercise, while the Ntrk2 expression was reduced by risperidone and reversed by exercise. The Mfn1 mRNA expression was decreased by risperidone with or without voluntary exercise. The risperidone-decreased Ppargc1α gene expression was enhanced by exercise. CONCLUSION Risperidone affects synaptic plasticity through a complex mechanism in female juvenile rats: enhancing certain key genes in the hippocampus while inhibiting genes essential for mitochondrial function. In line with our hypothesis, voluntary exercise promotes genes beneficial for synaptic plasticity and enhances specific genes reduced by risperidone, in female juvenile rats.
Collapse
Affiliation(s)
- Weijie Yi
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Emma Sylvester
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
3
|
Matsunaga D, Nakagawa H, Ishiwata T. Comparison of forced and voluntary exercise types on male rat brain monoamine levels, anxiety-like behaviour, and physiological indexes under light and dark phases. Behav Brain Res 2025; 479:115321. [PMID: 39510330 DOI: 10.1016/j.bbr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Physical exercise improves physical and mental health; however, the differences between voluntary and forced exercise protocols are unclear. In addition, knowledge regarding the consequences of differences in testing timing, such as light and dark phases, in response to exercise type is limited. We investigated the effects of chronic forced and voluntary wheel running on the changes in brain monoamine levels (5-HT: serotonin, DA: dopamine, NA: noradrenaline), anxiety-like behaviours, and physiological stress responses in the light and dark phases. METHODS Adult male Wistar rats were equally and randomly assigned to four groups: sedentary control, voluntary exercise (free running on a wheel, V-EX), voluntary limited exercise (wheel available only 1 h/day, VL-EX), and forced exercise (running on a motorised wheel, F-EX). Each group was further divided into dark- or light-experimental condition groups. After 4 weeks, the rats underwent an open-field test. The monoamines and their metabolite levels were measured in the major neural cell bodies and the projection areas related to behaviour, cognition, anxiety, and stress in the brain. RESULTS Adrenal hypertrophy and elevated body temperature, except during the exercise period, were observed in the F-EX rats that exhibited anxiety-like behaviour. The levels of monoamines and their metabolites, particularly the 5-HTergic and DAergic systems, in specific areas, were significantly altered in the rats in the V-EX group compared to those in the VL-EX and other groups. These differences were observed only in the dark phase. CONCLUSION The results suggest that V-EX mainly stimulates the 5-HTergic and DAergic systems, while F-EX induces physiological stress and increases anxiety-like behaviour during the dark phase. This study highlights the importance of accounting for exercise types and light/dark phases in behavioural neuroscience experiments.
Collapse
Affiliation(s)
- Daisuke Matsunaga
- Department of Health-Promotion and Sports Science, Osaka Electro-Communication University, 1130-70 Kiyotaki, Shijonawate-shi, Osaka 575-0063, Japan; Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan.
| | - Hikaru Nakagawa
- College of Sport &Wellness, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan; College of Sport &Wellness, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama 352-8558, Japan
| |
Collapse
|
4
|
Sezer T, Okudan N, Belviranli M. Comparing the effect of high-intensity interval exercise and voluntary exercise training on cognitive functions in rats. Neurosci Lett 2024; 842:137993. [PMID: 39306028 DOI: 10.1016/j.neulet.2024.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
It is known that exercise increases brain-derived neurotrophic factor (BDNF) levels in the hippocampus, the brain region responsible for learning and memory, resulting in improved cognitive functions and learning processes. However, it is claimed that different types of exercise cause different responses in the brain. It is thought that lactate and osteocalcin secreted in response to exercise are associated with an increase in BDNF levels. However, there are not enough studies on this subject. This study aimed to compare the effects of high-intensity interval training (HIIT) and voluntary exercise training on cognitive performance and molecular connections. Male rats were randomly divided into control, voluntary exercise training and HIIT groups. The voluntary exercise group had free access to the voluntary wheel for 8 weeks. The HIIT group performed HIIT on the treadmill 3 days a week for 8 weeks. The rats underwent open field (OF), elevated plus maze (EPM) and Morris water maze (MWM) tests 24 h after the last exercise training. Then, after blood was drawn under anesthesia, the rats were sacrificed and their hippocampus tissues were separated. Glucocorticoid and BDNF levels in the blood were evaluated by enzyme-linked immunosorbent assay (ELISA), and osteocalcin and BDNF expressions in the hippocampus were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Neither voluntary exercise training nor HIIT had any significant effect on behavioral parameters assessed by OF, EPM and MWM tests. However, BDNF expression in hippocampus tissue was higher in the HIIT group than in the control group. In addition, osteocalcin expression in hippocampus tissue was higher in the HIIT and voluntary exercise groups than in the control group. In conclusion, according to the findings we obtained from this study, although it does not have a significant effect on cognitive functions, the effect of HIIT on brain functions seems to be more effective than voluntary exercise.
Collapse
Affiliation(s)
- Tuğba Sezer
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| | - Muaz Belviranli
- Selcuk University Faculty of Medicine, Department of Physiology, Konya, Turkey.
| |
Collapse
|
5
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Nagy D, Priksz D, Bombicz M, Kiss R, Szabó AM, Lehoczki A, Gesztelyi R, Juhász B, Szilvássy Z, Varga B. Effects of voluntary and forced physical exercise on the retinal health of aging Wistar rats. GeroScience 2024; 46:4707-4728. [PMID: 38795184 PMCID: PMC11336036 DOI: 10.1007/s11357-024-01208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
Aging is accompanied by an increased prevalence of degenerative conditions, including those affecting ocular health, which significantly impact quality of life and increase the burden on healthcare systems. Among these, retinal aging is of particular concern due to its direct link to vision impairment, a leading cause of disability in the elderly. Vision loss in the aging population is associated with heightened risks of cognitive decline, social isolation, and morbidity. This study addresses the critical gap in our understanding of modifiable lifestyle factors, such as physical exercise, that may mitigate retinal aging and its related pathologies. We investigated the effects of different exercise regimens-voluntary (recreational-type) and forced (high-intensity)-on the retinal health of aging Wistar rats (18-month-old), serving as a model for studying the translational potential of exercise interventions in humans. Male Wistar rats were divided into four groups: a young control (3-month-old) for baseline comparison, an aged sedentary control, an aged group engaging in voluntary exercise via a running wheel in their cage, and an aged group subjected to forced exercise on a treadmill for six sessions of 20 min each per week. After a 6-month experimental period, we assessed retinal function via electroretinography (ERG), measured retinal thickness histologically, and analyzed protein expression changes relevant to oxidative stress, inflammation, and anti-aging mechanisms. Our findings reveal that voluntary exercise positively impacts retinal function and morphology, reducing oxidative stress and inflammation markers while enhancing anti-aging protein expression. In contrast, forced exercise showed diminished benefits. These insights underscore the importance of exercise intensity and preference in preserving retinal health during aging. The study highlights the potential of recreational physical activity as a non-invasive strategy to counteract retinal aging, advocating for further research into exercise regimens as preventative therapies for age-related ocular degenerations.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dávid Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Adrienn Mónika Szabó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary.
| |
Collapse
|
6
|
Reitz NL, Nunes PT, Savage LM. Exercise leads to sex-specific recovery of behavior and pathological AD markers following adolescent ethanol exposure in the TgF344-AD model. Front Behav Neurosci 2024; 18:1448691. [PMID: 39148897 PMCID: PMC11324591 DOI: 10.3389/fnbeh.2024.1448691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Human epidemiological studies suggest that heavy alcohol consumption may lead to earlier onset of Alzheimer's Disease (AD), especially in individuals with a genetic predisposition for AD. Alcohol-related brain damage (ARBD) during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study investigates if voluntary exercise in mid-adulthood can recover memory deficits caused by the interactions between adolescence ethanol exposure and AD-transgenes. Methods Male and female TgF344-AD and wildtype F344 rats were exposed to an intragastric gavage of water (control) or 5 g/kg of 20% ethanol (adolescent intermittent ethanol; AIE) for a 2 day on/off schedule throughout adolescence (PD27-57). At 6 months old, rats either remained in their home cage (stationary) or were placed in a voluntary wheel running apparatus for 4 weeks and then underwent several behavioral tests. The number of cholinergic neurons in the basal forebrain and measure of neurogenesis in the hippocampus were assessed. Results Voluntary wheel running recovers spatial working memory deficits selectively in female TgF344-AD rats exposed to AIE and improves pattern separation impairment seen in control TgF344-AD female rats. There were sex-dependent effects on brain pathology: Exercise improves the integration of recently born neurons in AIE-exposed TgF344-AD female rats. Exercise led to a decrease in amyloid burden in the hippocampus and entorhinal cortex, but only in male AIE-exposed TgF344-AD rats. Although the number of basal forebrain cholinergic neurons was not affected by AD-transgenes in either sex, AIE did reduce the number of basal forebrain cholinergic neurons in female rats. Discussion These data provide support that even after symptom onset, AIE and AD related cognitive decline and associated neuropathologies can be rescued with exercise in unique sex-specific ways.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| |
Collapse
|
7
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
8
|
Alexander M, Machado L. Chronic exercise and neuropsychological function in healthy young adults: a randomised controlled trial investigating a running intervention. Cogn Process 2024; 25:241-258. [PMID: 38421460 PMCID: PMC11106121 DOI: 10.1007/s10339-024-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Despite the well-known physical and mental health benefits of regular exercise, many of the world's population, including healthy young adults, grossly undershoot recommended physical activity levels. Chronic exercise has potential to improve cognitive performance and affect in most age groups. However, there is currently a poverty of relevant research in young adults, especially randomised controlled trials. To address this, the current research investigated the effects of a running intervention on neuropsychological function (cognition and affect) in young adults. We predicted that following a running intervention, neuropsychological performance would improve alongside increases in aerobic fitness. Thirty-two healthy young adult university students were randomised (using a 3:1 ratio) into an intervention or control group, with the intervention group (n = 24) asked to run for 30 min three times a week over a 6-week period and the control group (n = 8) asked to maintain their current level of exercise over a 6-week period. We assessed fitness, cognitive performance, affect and running enjoyment at baseline and follow-up, and runners recorded the environmental conditions of their runs. Repeated measures ANCOVAs failed to find any significant effects of the running intervention on fitness or the neuropsychological measures. Anecdotal evidence supported running environment and enjoyment as potentially relevant factors. The failure to find any fitness improvements, which likely underpins the lack of neuropsychological improvements, highlights the importance of monitoring exercise sessions. Coupled with other insights gained from this trial, this article may prove useful towards future endeavours to develop exercise interventions beneficial to young adults.TRN: ACTRN12621000242820, Date of registration: 08/03/2021.
Collapse
Affiliation(s)
- Mhairi Alexander
- Department of Psychology, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9054, New Zealand
- Brain Research New Zealand, Auckland, New Zealand
| | - Liana Machado
- Department of Psychology, University of Otago, William James Building, 275 Leith Walk, Dunedin, 9054, New Zealand.
- Brain Research New Zealand, Auckland, New Zealand.
| |
Collapse
|
9
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
10
|
Nikbin S, Fardad G, Yazdi S, Bahman MH, Ettefagh P, Khalegi F, Molaei M, Azizbeigi K, Guerra-Balic M, Montané J, Zargani M, Azarbayjani MA. Aerobic exercise training reduces deep-frying oil-induced apoptosis of hippocampal tissue by reducing oxidative stress in male rats. J Chem Neuroanat 2023; 133:102328. [PMID: 37652270 DOI: 10.1016/j.jchemneu.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Deep-frying oil (DFO) contains high amounts of free radicals, and consuming foods prepared with this method causes damage to nervous tissue due to oxidative stress (OS). Since moderate-intensity aerobic exercise training (AT) reduces OS, the current search investigated the effects of AT on OS, apoptosis, and neurogenesis markers in the hippocampal tissue of DFO-fed rats. Eighteen Wistar male rats (200-280 gr) were randomly allocated to a control group fed with normal food (Con-ND), a control group receiving DFO (Con-DFO), and a group receiving DFO-aerobic exercise (EX-DFO) (n = 6 in each). DFO was gavaged for four weeks, five days a week, with a dose of 2 ml. AT included running on a treadmill for four weeks and five sessions per week (40 min per session). The expression of genes B-cell lymphoma 2 (BCL-2), Protein X associated with Bcl-2 (BAX), Caspase-3 (Casp-3), and Caspase-9 (Casp-9) was measured by PCR method. The ELISA method was used to calculate levels of Superoxide dismutase (SOD) and Catalase (CAT) activity, malondialdehyde (MDA), and Brain-Derived Neurotrophic Factor (BDNF). Also, the expression of the proteins Cannabinoid receptor type 1(CB1), Cannabinoid receptor type2 (CB2), Glial fibrillary acidic protein (GFAP), Neuronal nuclei (NeuN), and DNA fragmentation was evaluated by Immunohistochemical and TUNEL staining. DFO feeding led to a significant increase in apoptotic markers, such as BAX, Casp-3, and Casp-9 gene expression, and DNA fragmentation (p ≤ 0.05) while decreasing BDNF concentration SOD activity (p ≤ 0.05). AT significantly reduced the BAX, Casp-3, Casp-9, MDA, CB1, GFAP, and DNA fragmentation (p ≤ 0.05). In conclusion, AT can reduce the harmful effects of feeding with DFO on the hippocampal tissue.
Collapse
Affiliation(s)
- Sina Nikbin
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gita Fardad
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sara Yazdi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Hosseini Bahman
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Ettefagh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khalegi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mino Molaei
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamal Azizbeigi
- Exercise Physiology, Department of Physical Education, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Myriam Guerra-Balic
- Research Group on Health, Physical Activity and Sport (SAFE), Faculty of Psychology, Education and Sport Sciences Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Joel Montané
- Research Group on Health, Physical Activity and Sport (SAFE), Faculty of Psychology, Education and Sport Sciences Blanquerna, Ramon Llull University, Barcelona, Spain
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Serra L, Petrosini L, Mandolesi L, Bonarota S, Balsamo F, Bozzali M, Caltagirone C, Gelfo F. Walking, Running, Swimming: An Analysis of the Effects of Land and Water Aerobic Exercises on Cognitive Functions and Neural Substrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16310. [PMID: 36498383 PMCID: PMC9740550 DOI: 10.3390/ijerph192316310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In the brain and cognitive reserves framework, aerobic exercise is considered as a protective lifestyle factor able to induce positive effects on both brain structure and function. However, specific aspects of such a beneficial effect still need to be completely clarified. To this aim, the present narrative review focused on the potential brain/cognitive/neural reserve-construction mechanisms triggered by different aerobic exercise types (land activities; such as walking or running; vs. water activities; such as swimming), by considering human and animal studies on healthy subjects over the entire lifespan. The literature search was conducted in PubMed database. The studies analyzed here indicated that all the considered kinds of activities exert a beneficial effect on cognitive/behavioral functions and on the underlying brain neurobiological processes. In particular, the main effects observed involve the cognitive domains of memory and executive functions. These effects appear related to structural and functional changes mainly involving the fronto-hippocampal axis. The present review supports the requirement of further studies that investigate more specifically and systematically the effects of each type of aerobic activity, as a basis to plan more effective and personalized interventions on individuals as well as prevention and healthy promotion policies for the general population.
Collapse
Affiliation(s)
- Laura Serra
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Torino, 10126 Turin, Italy
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | | | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| |
Collapse
|