1
|
Gyoda T, Hashimoto R, Inagaki S, Tsushi N, Kitao T, Minati L, Yoshimura N. Electroencephalography-guided transcranial direct current stimulation improves picture-naming performance. Neuroimage 2025; 308:120997. [PMID: 39778817 DOI: 10.1016/j.neuroimage.2024.120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) is a potential method for improving verbal function by stimulating Broca's area. Previous studies have shown the effectiveness of using functional magnetic resonance imaging (fMRI) to optimize the stimulation site, but it is unclear whether similar optimization can be achieved using scalp electroencephalography (EEG). Here, we investigated whether tDCS targeting a brain area identified by EEG can improve verbalization performance during a picture-naming task. In Experiment 1, EEG and fMRI data were acquired during a naming task with 21 participants. Comparison of EEG and fMRI data showed overlap in the highest areas of activation for 80% of the participants. In Experiment 2, tDCS was administered to 15 participants using a crossover design, with stimulation targeting the EEG-guided area, Broca's area, and sham conditions. Our findings indicated that tDCS targeting the EEG-guided area significantly improved lexical retrieval speed compared with stimulation over Broca's area and sham conditions. These results support the validity of EEG-based area identification and its use in optimizing the effects of tDCS on improving language function.
Collapse
Affiliation(s)
| | - Ryuichiro Hashimoto
- Department of Language Science, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Satoru Inagaki
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan
| | | | | | - Ludovico Minati
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; Center for Mind/Brain Science (CIMeC), University of Trento, Trento, Italy
| | - Natsue Yoshimura
- School of Computing, Institute of Science Tokyo (formerly Tokyo Institute of Technology), Yokohama, Japan; ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan.
| |
Collapse
|
2
|
Yu Z, Xue L, Xu W, Liu J, Jia Q, Liu Y, Zhou L, Hu J, Li H, Wu J. Neural responses to camouflage targets with different exposure signs based on EEG. Neuropsychologia 2024; 204:109002. [PMID: 39293638 DOI: 10.1016/j.neuropsychologia.2024.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
This study investigates the relationship between various target exposure signs and brain activation patterns by analyzing the EEG signals of 35 subjects observing four types of targets: well-camouflaged, with large color differences, with shadows, and of large size. Through ERP analysis and source localization, we have established that different exposure signs elicit distinct brain activation patterns. The ERP analysis revealed a strong correlation between the latency of the P300 component and the visibility of the exposure signs. Furthermore, our source localization findings indicate that exposure signs alter the current density distribution within the cortex, with shadows causing significantly higher activation in the frontal lobe compared to other conditions. The study also uncovered a pronounced right-brain laterality in subjects during target identification. By employing an LSTM neural network, we successfully differentiated EEG signals triggered by various exposure signs, achieving a classification accuracy of up to 96.4%. These results not only suggest that analyzing the P300 latency and cortical current distribution can differentiate the degree of visibility of target exposure signs, but also demonstrate the potential of using EEG characteristics to identify key exposure signs in camouflaged targets. This provides crucial insights for developing auxiliary camouflage strategies.
Collapse
Affiliation(s)
- Zhou Yu
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing Jiangsu, 210096, PR China
| | - Weidong Xu
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China.
| | - Jun Liu
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Qi Jia
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Yawen Liu
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu, 210016, PR China
| | - Jianghua Hu
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Hao Li
- College of Field Engineering, Army Engineering University of PLA, Nanjing Jiangsu, 210007, PR China
| | - Jidong Wu
- Unit 31608 of PLA, Xiamen Fujian, 361000, PR China
| |
Collapse
|
3
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
4
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. The efficacy of low frequency repetitive transcial magnetic stimulation for treating auditory verbal hallucinations in schizophrenia: Insights from functional gradient analyses. Heliyon 2024; 10:e30194. [PMID: 38707410 PMCID: PMC11066630 DOI: 10.1016/j.heliyon.2024.e30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Background Auditory Verbal Hallucinations (AVH) constitute a prominent feature of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic benefits in ameliorating AVH, the underlying mechanisms of its efficacy necessitate further elucidation. Objective This study investigated the cortical gradient characteristics and their associations with clinical responses in schizophrenia patients with AVH, mediated through 1 Hz rTMS targeting the left temporoparietal junction. Method Functional gradient metrics were employed to examine the hierarchy patterns of cortical organization, capturing whole-brain functional connectivity profiles in patients and controls. Results The 1 Hz rTMS treatment effectively ameliorated the positive symptoms in patients, specifically targeting AVH. Initial evaluations revealed expanded global gradient distribution patterns and specific principal gradient variations in certain brain regions in patients at baseline compared to a control cohort. Following treatment, these divergent global and local patterns showed signs of normalizing. Furthermore, there was observed a closer alignment in between-network dispersion among various networks after treatment, including the somatomotor, attention, and limbic networks, indicating a potential harmonization of brain functionality. Conclusion Low-frequency rTMS induces alternations in principal functional gradient patterns, may serve as imaging markers to elucidate the mechanisms underpinning the therapeutic efficacy of rTMS on AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Mehta DD, Siddiqui S, Ward HB, Steele VR, Pearlson GD, George TP. Functional and structural effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of auditory verbal hallucinations in schizophrenia: A systematic review. Schizophr Res 2024; 267:86-98. [PMID: 38531161 PMCID: PMC11531343 DOI: 10.1016/j.schres.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Auditory verbal hallucinations (AVH) are a disabling symptom for people with schizophrenia (SCZ), and do not always respond to antipsychotics. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for medication-refractory AVH, though the underlying neural mechanisms by which rTMS produces these effects remain unclear. This systematic review evaluated the structural and functional impact of rTMS for AVH in SCZ, and its association with clinical outcomes. METHODS A systematic search was conducted in Medline, PsychINFO, and PubMed using terms for four key concepts: AVH, SCZ, rTMS, neuroimaging. Using PRISMA guidelines, 18 studies were identified that collected neuroimaging data of an rTMS intervention for AVH in SCZ. Risk of bias assessments was conducted. RESULTS Low frequency (<5 Hz) rTMS targeting left hemispheric language processing regions may normalize brain abnormalities in AVH patients at structural, functional, electrophysiological, and topological levels, with concurrent symptom improvement. Amelioration of aberrant neural activity in frontotemporal networks associated with speech and auditory processing was commonly observed, as well as in cerebellar and emotion regulation regions. Neuroimaging analyses identified neural substrates with direct correlations to post-rTMS AVH severity, propounding their use as therapeutic targets. DISCUSSION Combined rTMS-neuroimaging highlights the multidimensional alterations of rTMS on brain activity and structure in treatment-resistant AVH, which may be used to develop more efficacious therapies. Larger randomized, sham-controlled studies are needed. Future studies should explore alternate stimulation targets, investigate the neural effects of high-frequency rTMS and evaluate long-term neuroimaging outcomes.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Salsabil Siddiqui
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Heather B Ward
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vaughn R Steele
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Godfrey D Pearlson
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Tony P George
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Hartford Hospital and Department of Psychiatry and Behavioural Sciences, Yale University, New Haven, CT, USA; Department of Psychiatry, University of Toronto, Canada; Addictions Division and Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
6
|
Vellucci L, Ciccarelli M, Buonaguro EF, Fornaro M, D’Urso G, De Simone G, Iasevoli F, Barone A, de Bartolomeis A. The Neurobiological Underpinnings of Obsessive-Compulsive Symptoms in Psychosis, Translational Issues for Treatment-Resistant Schizophrenia. Biomolecules 2023; 13:1220. [PMID: 37627285 PMCID: PMC10452784 DOI: 10.3390/biom13081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Almost 25% of schizophrenia patients suffer from obsessive-compulsive symptoms (OCS) considered a transdiagnostic clinical continuum. The presence of symptoms pertaining to both schizophrenia and obsessive-compulsive disorder (OCD) may complicate pharmacological treatment and could contribute to lack or poor response to the therapy. Despite the clinical relevance, no reviews have been recently published on the possible neurobiological underpinnings of this comorbidity, which is still unclear. An integrative view exploring this topic should take into account the following aspects: (i) the implication for glutamate, dopamine, and serotonin neurotransmission as demonstrated by genetic findings; (ii) the growing neuroimaging evidence of the common brain regions and dysfunctional circuits involved in both diseases; (iii) the pharmacological modulation of dopaminergic, serotoninergic, and glutamatergic systems as current therapeutic strategies in schizophrenia OCS; (iv) the recent discovery of midbrain dopamine neurons and dopamine D1- and D2-like receptors as orchestrating hubs in repetitive and psychotic behaviors; (v) the contribution of N-methyl-D-aspartate receptor subunits to both psychosis and OCD neurobiology. Finally, we discuss the potential role of the postsynaptic density as a structural and functional hub for multiple molecular signaling both in schizophrenia and OCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|