1
|
Pandey SK, Nanda A, Gautam AS, Chittoda A, Tiwari A, Singh RK. Ferrous sulfate and lipopolysaccharide co-exposure induce neuroinflammation, neurobehavioral motor deficits, neurodegenerative and histopathological biomarkers relevant to Parkinson's disease-like symptoms in Wistar rats. Biometals 2025:10.1007/s10534-025-00693-7. [PMID: 40379880 DOI: 10.1007/s10534-025-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/29/2025] [Indexed: 05/19/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra region of the brain. Although iron is one of the essential micronutrients in the brain, its excess exposure and accumulation in the brain substantia nigra and striatum regions may induce critical pathological changes relevant to PD. This study has evaluated neurobehavioral, biochemical, and structural alterations resembling PD-like symptoms induced through a 4-week co-exposure of ferrous sulfate (FeSO4) with lipopolysaccharide (LPS) in Wistar rats. Our results revealed motor deficits, oxidative stress, neuroinflammation, iron dysregulation, protein aggregation, ferroptosis, and apoptotic cell death. Notably, we observed decreased tyrosine hydroxylase levels and increased α-synuclein accumulation, consistent with PD pathology. The immunohistopathological assessments showed astrocyte activation and iron deposition, supporting their roles in neuroinflammation and oxidative stress. Furthermore, we identified alterations in apoptosis and ferroptosis markers, suggesting dose-related involvement of FeSO4 in neuronal death in the rat brain. These findings have highlighted the multifaceted mechanisms during the co-exposure of FeSO4 and LPS-induced neurodegeneration and neuroinflammation relevant to PD. This study emphasizes that therapeutic targeting of these pathological mechanisms may offer a promising therapeutic intervention in PD.
Collapse
Affiliation(s)
- Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Anjuman Nanda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Apurva Chittoda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Jin J, Su D, Zhang J, Lam JST, Zhou J, Feng T. Iron deposition in subcortical nuclei of Parkinson's disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies. Chin Med J (Engl) 2025; 138:678-692. [PMID: 38809051 PMCID: PMC11925423 DOI: 10.1097/cm9.0000000000003167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Iron deposition plays a crucial role in the pathophysiology of Parkinson's disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). METHODS A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2 * and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. RESULTS Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata ( P <0.001) and compacta ( P <0.001), SN ( P <0.001), red nucleus (RN, P <0.001), globus pallidus ( P <0.001), putamen (PUT, P = 0.021), and thalamus ( P = 0.029) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT ( P <0.001), RN ( P = 0.003), SN ( P = 0.017), and caudate nucleus ( P = 0.017) than MSA patients, and lower iron content in RN ( P = 0.001), PUT ( P <0.001), globus pallidus ( P = 0.004), SN ( P = 0.015), and caudate nucleus ( P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.86). CONCLUSIONS Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. REGISTRISION PROSPERO (CRD42022344413).
Collapse
Affiliation(s)
- Jianing Jin
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Junjiao Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Joyce S. T. Lam
- Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States
- Harvard Medical School, Boston, MA 02210, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
3
|
Ghaderi S, Mohammadi S, Ahmadzadeh AM, Darmiani K, Arab Bafrani M, Jashirenezhad N, Helfi M, Alibabaei S, Azadi S, Heidary S, Fatehi F. Thalamic Magnetic Susceptibility (χ) Alterations in Neurodegenerative Diseases: A Systematic Review and Meta-Analysis of Quantitative Susceptibility Mapping Studies. J Magn Reson Imaging 2025. [PMID: 39832811 DOI: 10.1002/jmri.29698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Quantitative Susceptibility Mapping (QSM) provides a non-invasive post-processing method to investigate alterations in magnetic susceptibility (χ), reflecting iron content within brain regions implicated in neurodegenerative diseases (NDDs). PURPOSE To investigate alterations in thalamic χ in patients with NDDs using QSM. STUDY TYPE Systematic review and meta-analysis. POPULATION A total of 696 patients with NDDs and 760 healthy controls (HCs) were included in 27 studies. FIELD STRENGTH/SEQUENCE Three-dimensional multi-echo gradient echo sequence for QSM at mostly 3 Tesla. ASSESSMENT Studies reporting QSM values in the thalamus of patients with NDDs were included. Following PRISMA 2020, we searched the four major databases including PubMed, Scopus, Web of Science, and Embase for peer-reviewed studies published until October 2024. STATISTICAL TESTS Meta-analysis was conducted using a random-effects model to calculate the standardized mean difference (SMD) between patients and HCs. RESULTS The pooled SMD indicated a significant increase in thalamic χ in NDDs compared to HCs (SMD = 0.42, 95% CI: 0.05-0.79; k = 27). Notably, amyotrophic lateral sclerosis patients showed a significant increase in thalamic χ (1.09, 95% CI: 0.65-1.53, k = 2) compared to HCs. Subgroup analyses revealed significant χ alterations in younger patients (mean age ≤ 62 years; 0.56, 95% CI: 0.10-1.02, k = 11) and studies using greater coil channels (coil channels > 16; 0.64, 95% CI: 0.28-1.00, k = 9). Publication bias was not detected and quality assessment indicated that studies with a lower risk of bias presented more reliable findings (0.75, 95% CI: 0.32-1.18, k = 9). Disease type was the primary driver of heterogeneity, while other factors, such as coil type and geographic location, also contributed to variability. DATA CONCLUSION Our findings support the potential of QSM for investigating thalamic involvement in NDDs. Future research should focus on disease-specific patterns, thalamic-specific nucleus analysis, and temporal evolution. PLAIN LANGUAGE SUMMARY Our research investigated changes in iron levels within the thalamus, a brain region crucial for motor and cognitive functions, in patients with various neurodegenerative diseases (NDDs). The study utilized a specific magnetic resonance imaging technique called Quantitative Susceptibility Mapping (QSM) to measure iron content. It identified a significant increase in thalamic iron levels in NDD patients compared to healthy individuals. This increase was particularly prominent in patients with Amyotrophic Lateral Sclerosis, younger individuals, and studies employing advanced imaging equipment. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Darmiani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Arab Bafrani
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Jashirenezhad
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sanaz Alibabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sareh Azadi
- Department of Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sahar Heidary
- Health Institute, Medical Physics Department, Yeditepe University, Istanbul, Turkey
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
4
|
Zang S, Pan Y, Chen M, Zhang G. Different iron distribution patterns in Parkinson's disease and its motor subtypes: a quantitative susceptibility mapping study. Acta Radiol 2025; 66:99-106. [PMID: 39574326 DOI: 10.1177/02841851241297207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND This study utilized quantitative susceptibility mapping (QSM) to evaluate magnetic susceptibility of brain nuclei in Parkinson's disease (PD). PURPOSE To explore iron deposition patterns in PD and ascertain if these patterns can distinguish between motor subtypes. MATERIAL AND METHODS This study enrolled 30 healthy controls and 34 patients with PD categorized mainly into postural instability and gait disorder (PIGD) (n = 12) and tremor dominance (TD) (n = 16). A total of 18 regions of interest were delineated, and a comprehensive classification of nuclei was conducted, including the differentiation of globus pallidus (GP) into its external (GPe) and internal (GPi) segments. All participants underwent brain magnetic resonance imaging. RESULTS Notable differences in magnetic susceptibility were identified in bilateral substantia nigra pars reticulate (SNr) and substantia nigra pars compacta (SNc) between PD and HC. Significant differences in QSM values of bilateral GPe, SNr, and SNc-R were found between TD and PIGD. The susceptibility values of bilateral putamen (PUT) were positively correlated with MDS-UPDRSIII score and Hoehn-Yahr scale in PD. QSM values of bilateral PUT and SNc-L showed associations with MDS-UPDRSIII score in TD. QSM values showed associations with MDS-UPDRSIII in bilateral PUT and Hoehn-Yahr scale in PUT-L and TH-L in PIGD. CONCLUSION Pathologic iron deposition exhibits variability across nuclei of PD, with age also influencing this distribution. SN may be meaningful in identifying different subtypes of PD, such as differentiating PD from HC in the future.
Collapse
Affiliation(s)
- Siting Zang
- Hulunbuir Clinical Medical College, Inner Mongolia Minzu University, Tongliao, PR China
- Department of Radiology, Hulunbuir People's Hospital, Hulunbuir, PR China
| | - Yu Pan
- Hulunbuir Clinical Medical College, Inner Mongolia Minzu University, Tongliao, PR China
- Department of Radiology, Hulunbuir People's Hospital, Hulunbuir, PR China
| | - Miao Chen
- Department of Radiology, Hulunbuir People's Hospital, Hulunbuir, PR China
| | - Gang Zhang
- Department of Radiology, Hulunbuir People's Hospital, Hulunbuir, PR China
| |
Collapse
|
5
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|