1
|
Arjmandzadeh Z, Abbasi MH, Wang H, Zhang J, Xu B. A Lyapunov Optimization-Based Approach to Autonomous Vehicle Local Path Planning. SENSORS (BASEL, SWITZERLAND) 2024; 24:8031. [PMID: 39771765 PMCID: PMC11680059 DOI: 10.3390/s24248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Autonomous vehicles (AVs) offer significant potential to improve safety, reduce emissions, and increase comfort, drawing substantial attention from both research and industry. A critical challenge in achieving SAE Level 5 autonomy, full automation, is path planning. Ongoing efforts in academia and industry are focused on optimizing AV path planning, reducing computational complexity, and enhancing safety. This paper presents a novel approach using Lyapunov Optimization (LO) for local path planning in AVs. The proposed LO model is benchmarked against two conventional methods: model predictive control and a sampling-based approach. Additionally, an AV prototype was developed and tested in Norman, Oklahoma, where it collected data to evaluate the performance of the three control algorithms used in this study. To minimize costs and increase real-world applicability, a vision-only solution was employed for object detection and the generation of bird's-eye-view coordinate data. Each control algorithm, i.e., Lyapunov Optimization (LO) and the two baseline methods, were independently used to generate safe and smooth paths for the AV based on the collected data. The approaches were then compared in terms of path smoothness, safety, and computation time. Notably, the proposed LO strategy demonstrated at least a 20 times reduction in computation time compared to the baseline methods.
Collapse
Affiliation(s)
- Ziba Arjmandzadeh
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (Z.A.); (H.W.)
| | - Mohammad Hossein Abbasi
- Department of Automotive Engineering, Clemson University, Greenville, SC 29607, USA; (M.H.A.); (J.Z.)
| | - Hanchen Wang
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (Z.A.); (H.W.)
| | - Jiangfeng Zhang
- Department of Automotive Engineering, Clemson University, Greenville, SC 29607, USA; (M.H.A.); (J.Z.)
| | - Bin Xu
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (Z.A.); (H.W.)
| |
Collapse
|
2
|
Li N, Cao J, Wang F. Bipartite secure synchronization criteria for coupled quaternion-valued neural networks with signed graph. Neural Netw 2024; 180:106717. [PMID: 39276586 DOI: 10.1016/j.neunet.2024.106717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
This study explores the bipartite secure synchronization problem of coupled quaternion-valued neural networks (QVNNs), in which variable sampled communications and random deception attacks are considered. Firstly, by employing the signed graph theory, the mathematical model of coupled QVNNs with structurally-balanced cooperative-competitive interactions is established. Secondly, by adopting non-decomposition method and constructing a suitable unitary Lyapunov functional, the bipartite secure synchronization (BSS) criteria for coupled QVNNs are obtained in the form of quaternion-valued LMIs. It is essential to mention that the structurally-balanced topology is relatively strong, hence, the coupled QVNNs with structurally-unbalanced graph are further studied. The structurally-unbalanced graph is treated as an interruption of the structurally-balanced graph, the bipartite secure quasi-synchronization (BSQS) criteria for coupled QVNNs with structurally-unbalanced graph are derived. Finally, two simulations are given to illustrate the feasibility of the suggested BSS and BSQS approaches.
Collapse
Affiliation(s)
- Ning Li
- College of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450046, China.
| | - Jinde Cao
- School of Mathematics, and Research Center for Complex Systems and Network Sciences, Southeast University, Nanjing, 210096, China.
| | - Fei Wang
- School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
3
|
Ye Y, Chen H, Tao J, Cai Q, Shi P. Containment control for fractional-order networked system with intermittent sampled position communication. Neural Netw 2024; 178:106425. [PMID: 38850636 DOI: 10.1016/j.neunet.2024.106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
This paper investigates containment control for fractional-order networked systems. Two novel intermittent sampled position communication protocols, where controllers only need to keep working during communication width of every sampling period under the past sampled position communication of neighbors' agents. Then, some necessary and sufficient conditions are derived to guarantee containment about the differential order, sampling period, communication width, coupling strengths, and networked structure. Taking into account of the delay, a detailed discussion to guarantee containment is given with respect to the delay, sampling period, and communication width. Interestingly, it is discovered that containment control cannot be guaranteed without delay or past sampled position communication under the proposed protocols. Finally, the effectiveness of theoretical results is demonstrated by some numerical simulations.
Collapse
Affiliation(s)
- Yanyan Ye
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, and Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongzhe Chen
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, and Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Tao
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, and Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qianqian Cai
- Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, and Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Shi
- The University of Adelaide, Adelaide, SA 5005, Australia; Obuda University, Budapest, 1034, Hungary
| |
Collapse
|
4
|
Zhang Z, Wei X, Wang S, Lin C, Chen J. Fixed-Time Pinning Common Synchronization and Adaptive Synchronization for Delayed Quaternion-Valued Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:2276-2289. [PMID: 35830401 DOI: 10.1109/tnnls.2022.3189625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article focuses on the fixed-time pinning common synchronization and adaptive synchronization for quaternion-valued neural networks with time-varying delays. First, to reduce transmission burdens and limit convergence time, a pinning controller which only controls partial nodes directly rather than the entire nodes is proposed based on fixed-time control theory. Then, by Lyapunov function approach and some inequalities techniques, fixed-time common synchronization criterion is established. Second, further to realize the self-regulation function of pinning controller, an adaptive pinning controller which can adjust automatically the control gains is developed, the desired fixed-time adaptive synchronization is achieved for the considered system, and the corresponding criterion is also derived. Finally, the availability of these results is tested by simulation example.
Collapse
|
5
|
Meng X, Li Z, Cao J. Almost periodic quasi-projective synchronization of delayed fractional-order quaternion-valued neural networks. Neural Netw 2024; 169:92-107. [PMID: 37864999 DOI: 10.1016/j.neunet.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
This paper examines the issue of almost periodic quasi-projective synchronization of delayed fractional-order quaternion-valued neural networks. First, using a direct method rather than decomposing the fractional quaternion-valued system into four equivalent fractional real-valued systems, using Banach's fixed point theorem, according to the basic properties of fractional calculus and some inequality methods, we obtain that there is a unique almost periodic solution for this class of neural network with some sufficient conditions. Next, by constructing a suitable Lyapunov functional, using the characteristic of the Mittag-Leffler function and the scaling idea of the inequality, the adequate conditions for the quasi-projective synchronization of the established model are derived, and the upper bound of the systematic error is estimated. Finally, further use Matlab is used to carry out two numerical simulations to prove the results of theoretical analysis.
Collapse
Affiliation(s)
- Xiaofang Meng
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650021, China
| | - Zhouhong Li
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650021, China; Department of Mathematics, Yuxi Normal University, Yuxi, Yunnan 653100, China.
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 210096, China; Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
6
|
Li B, Cheng X. Synchronization analysis of coupled fractional-order neural networks with time-varying delays. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14846-14865. [PMID: 37679162 DOI: 10.3934/mbe.2023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems.
Collapse
Affiliation(s)
- Biwen Li
- School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
| | - Xuan Cheng
- School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
7
|
Zhang B, Zhang JE. Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10244-10263. [PMID: 37322931 DOI: 10.3934/mbe.2023449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we study fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks with delays. By applying fractional calculus and fixed-deviation stability theory, sufficient conditions are given to ensure the fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks under the linear discontinuous controller. Finally, two simulation examples are presented to show the validity of theoretical results.
Collapse
Affiliation(s)
- Bingrui Zhang
- School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
| | - Jin-E Zhang
- School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
8
|
Sheng Y, Gong H, Zeng Z. Global synchronization of complex-valued neural networks with unbounded time-varying delays. Neural Netw 2023; 162:309-317. [PMID: 36934692 DOI: 10.1016/j.neunet.2023.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
This paper investigates global synchronization of complex-valued neural networks (CVNNs) with unbounded time-varying delays. By applying analytical method and inequality techniques, an algebraic criterion is established to ensure global synchronization of the CVNNs via a devised feedback controller, which generalizes some existing outcomes. Finally, two numerical simulations and one application in image encryption are provided to verify the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Yin Sheng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Haoyu Gong
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
9
|
Quasi-Synchronization for Fractional-Order Reaction–Diffusion Quaternion-Valued Neural Networks: An LMI Approach. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Xiao J, Zhong S, Wen S. Unified Analysis on the Global Dissipativity and Stability of Fractional-Order Multidimension-Valued Memristive Neural Networks With Time Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5656-5665. [PMID: 33950847 DOI: 10.1109/tnnls.2021.3071183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unified criteria are analyzed on the global dissipativity and stability for the delayed fractional-order systems of multidimension-valued memristive neural networks (FSMVMNNs) in this article. First, based on the comprehensive knowledge about multidimensional algebra, fractional derivatives, and nonsmooth analysis, we establish the unified model for the studied FSMVMNNs in order to propose a more uniform method to analyze the dynamic behaviors of multidimensional neural networks. Then, by mainly applying the Lyapunov method, employing several new lemmas, and solving some mathematical difficulties, without any separation, we acquire the unified and concise criteria. The derived criteria have many advantages in a smaller calculation, lower conservatism, more diversity, and higher flexibility. Finally, we provide two numerical examples to express the availability and improvements of the theoretical results.
Collapse
|
11
|
Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks. Neural Netw 2022; 154:491-507. [DOI: 10.1016/j.neunet.2022.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
12
|
Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters. Neural Netw 2022; 150:181-193. [DOI: 10.1016/j.neunet.2022.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
|
13
|
Viera-Martin E, Gómez-Aguilar JF, Solís-Pérez JE, Hernández-Pérez JA, Escobar-Jiménez RF. Artificial neural networks: a practical review of applications involving fractional calculus. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:2059-2095. [PMID: 35194484 PMCID: PMC8853315 DOI: 10.1140/epjs/s11734-022-00455-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/13/2022] [Indexed: 05/13/2023]
Abstract
In this work, a bibliographic analysis on artificial neural networks (ANNs) using fractional calculus (FC) theory has been developed to summarize the main features and applications of the ANNs. ANN is a mathematical modeling tool used in several sciences and engineering fields. FC has been mainly applied on ANNs with three different objectives, such as systems stabilization, systems synchronization, and parameters training, using optimization algorithms. FC and some control strategies have been satisfactorily employed to attain the synchronization and stabilization of ANNs. To show this fact, in this manuscript are summarized, the architecture of the systems, the control strategies, and the fractional derivatives used in each research work, also, the achieved goals are presented. Regarding the parameters training using optimization algorithms issue, in this manuscript, the systems types, the fractional derivatives involved, and the optimization algorithm employed to train the ANN parameters are also presented. In most of the works found in the literature where ANNs and FC are involved, the authors focused on controlling the systems using synchronization and stabilization. Furthermore, recent applications of ANNs with FC in several fields such as medicine, cryptographic, image processing, robotic are reviewed in detail in this manuscript. Works with applications, such as chaos analysis, functions approximation, heat transfer process, periodicity, and dissipativity, also were included. Almost to the end of the paper, several future research topics arising on ANNs involved with FC are recommended to the researchers community. From the bibliographic review, we concluded that the Caputo derivative is the most utilized derivative for solving problems with ANNs because its initial values take the same form as the differential equations of integer-order.
Collapse
Affiliation(s)
- E. Viera-Martin
- Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos Mexico
| | - J. F. Gómez-Aguilar
- CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos Mexico
| | - J. E. Solís-Pérez
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla La Mesa, C.P. 76230 Juriquilla, Querétaro Mexico
| | - J. A. Hernández-Pérez
- Universidad Autónoma del Estado de Morelos/Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad No. 1001, Col Chamilpa, C.P. 62209 Cuernavaca, Morelos Mexico
| | - R. F. Escobar-Jiménez
- Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos Mexico
| |
Collapse
|
14
|
Abstract
This paper is concerned with the problem of event-triggered state estimation for a class of fractional-order neural networks. An event-triggering strategy is proposed to reduce the transmission frequency of the output measurement signals with guaranteed state estimation performance requirements. Based on the Lyapunov method and properties of fractional-order calculus, a sufficient criterion is established for deriving the Mittag–Leffler stability of the estimation error system. By making full use of the properties of Caputo operator and Mittag–Leffler function, the evolution dynamics of measured error is analyzed so as to exclude the unexpected Zeno phenomenon in the event-triggering strategy. Finally, two numerical examples and simulations are provided to show the effectiveness of the theoretical results.
Collapse
|
15
|
Xiao J, Li Y, Wen S. Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Li H, Kao Y. Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays. CHAOS (WOODBURY, N.Y.) 2021; 31:113110. [PMID: 34881590 DOI: 10.1063/5.0059887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This paper is dedicated to exploring the global Mittag-Leffler stability of fractional-order complex-valued (CV) neural networks (NNs) with asynchronous time delays, which generates exponential stability of integer-order (IO) CVNNs. Here, asynchronous time delays mean that there are different time delays in different nodes. Two new inequalities concerning the product of two Mittag-Leffler functions and one novel lemma on a fractional derivative of the product of two functions are given with a rigorous theoretical proof. By utilizing three norms, several novel conditions are concluded to guarantee the global Mittag-Leffler stability and the existence and uniqueness of an equilibrium point. Considering the symbols of the matrix elements, the properties of an M-matrix are extended to the general cases, which introduces the excitatory and inhibitory impacts on neurons. Compared with IOCVNNs, exponential stability is the special case of our results, which means that our model and results are general. At last, two numerical experiments are carried out to explain the theoretical analysis.
Collapse
Affiliation(s)
- Hui Li
- Department of Mathematics, Harbin Institute of Technology, Weihai, Shangdong 264209, People's Republic of China
| | - YongGui Kao
- Department of Mathematics, Harbin Institute of Technology, Weihai, Shangdong 264209, People's Republic of China
| |
Collapse
|
17
|
A Nonlinear Adaptive Controller for the Synchronization of Unknown Identical Chaotic Systems. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05222-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Zhang L, Zhong J, Lu J. Intermittent control for finite-time synchronization of fractional-order complex networks. Neural Netw 2021; 144:11-20. [PMID: 34438324 DOI: 10.1016/j.neunet.2021.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
This paper is concerned with the finite-time synchronization problem for fractional-order complex dynamical networks (FCDNs) with intermittent control. Using the definition of Caputo's fractional derivative and the properties of Beta function, the Caputo fractional-order derivative of the power function is evaluated. A general fractional-order intermittent differential inequality is obtained with fewer additional constraints. Then, the criteria are established for the finite-time convergence of FCDNs under intermittent feedback control, intermittent adaptive control and intermittent pinning control indicate that the setting time is related to order of FCDNs and initial conditions. Finally, these theoretical results are illustrated by numerical examples.
Collapse
Affiliation(s)
- Lingzhong Zhang
- School of Electrical Engineering and Automation, Changshu Institute of Technology, Changshu 215500, China
| | - Jie Zhong
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianquan Lu
- School of Mathematics, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
Xiao J, Cao J, Cheng J, Wen S, Zhang R, Zhong S. Novel Inequalities to Global Mittag-Leffler Synchronization and Stability Analysis of Fractional-Order Quaternion-Valued Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3700-3709. [PMID: 32997634 DOI: 10.1109/tnnls.2020.3015952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is concerned with the problem of the global Mittag-Leffler synchronization and stability for fractional-order quaternion-valued neural networks (FOQVNNs). The systems of FOQVNNs, which contain either general activation functions or linear threshold ones, are successfully established. Meanwhile, two distinct methods, such as separation and nonseparation, have been employed to solve the transformation of the studied systems of FOQVNNs, which dissatisfy the commutativity of quaternion multiplication. Moreover, two novel inequalities are deduced based on the general parameters. Compared with the existing inequalities, the new inequalities have their unique superiorities because they can make full use of the additional parameters. Due to the Lyapunov theory, two novel Lyapunov-Krasovskii functionals (LKFs) can be easily constructed. The novelty of LKFs comes from a wider range of parameters, which can be involved in the construction of LKFs. Furthermore, mainly based on the new inequalities and LKFs, more multiple and more flexible criteria are efficiently obtained for the discussed problem. Finally, four numerical examples are given to demonstrate the related effectiveness and availability of the derived criteria.
Collapse
|
20
|
Zheng B, Hu C, Yu J, Jiang H. Synchronization analysis for delayed spatio-temporal neural networks with fractional-order. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05808-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Ali MS, Hymavathi M. Synchronization of Fractional Order Neutral Type Fuzzy Cellular Neural Networks with Discrete and Distributed Delays via State Feedback Control. Neural Process Lett 2021. [DOI: 10.1007/s11063-020-10413-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Liu XZ, Li ZT, Wu KN. Boundary Mittag-Leffler stabilization of fractional reaction-diffusion cellular neural networks. Neural Netw 2020; 132:269-280. [PMID: 32949988 DOI: 10.1016/j.neunet.2020.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
Mittag-Leffler stabilization is studied for fractional reaction-diffusion cellular neural networks (FRDCNNs) in this paper. Different from previous literature, the FRDCNNs in this paper are high-dimensional systems, and boundary control and observed-based boundary control are both used to make FRDCNNs achieve Mittag-Leffler stability. First, a state-dependent boundary controller is designed when system states are available. By employing the spatial integral functional method and some inequalities, a criterion ensuring Mittag-Leffler stability of FRDCNNs is presented. Then, when the information of system states is not fully accessible, an observer is presented to estimate the system states based on boundary output and an observer-based boundary controller is provided aiming to stabilize the considered FRDCNNs. Furthermore, a robust observer-based boundary controller is proposed to ensure the Mittag-Leffler stability for FRDCNNs with uncertainties. Examples are given to illustrate the effectiveness of obtained theoretical results.
Collapse
Affiliation(s)
- Xiao-Zhen Liu
- Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, China.
| | - Ze-Tao Li
- Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, China.
| | - Kai-Ning Wu
- Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
24
|
Exponential synchronization of complex-valued memristor-based delayed neural networks via quantized intermittent control. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Chen J, Chen B, Zeng Z. Synchronization and Consensus in Networks of Linear Fractional-Order Multi-Agent Systems via Sampled-Data Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:2955-2964. [PMID: 31502992 DOI: 10.1109/tnnls.2019.2934648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article addresses synchronization and consensus problems in networks of linear fractional-order multi-agent systems (LFOMAS) via sampled-data control. First, under very mild assumptions, the necessary and sufficient conditions are obtained for achieving synchronization in networks of LFOMAS. Second, the results of synchronization are applied to solve some consensus problems in networks of LFOMAS. In the obtained results, the coupling matrix does not have to be a Laplacian matrix, its off-diagonal elements do not have to be nonnegative, and its row-sum can be nonzero. Finally, the validity of the theoretical results is verified by three simulation examples.
Collapse
|
26
|
|
27
|
Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.03.101] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Xiong JJ, Zhang GB, Wang JX, Yan TH. Improved Sliding Mode Control for Finite-Time Synchronization of Nonidentical Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:2209-2216. [PMID: 31380769 DOI: 10.1109/tnnls.2019.2927249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This brief further explores the problem of finite-time synchronization of delayed recurrent neural networks with the mismatched parameters and neuron activation functions. An improved sliding mode control approach is presented for addressing the finite-time synchronization problem. First, by employing the drive-response concept and the synchronization error of drive-response systems, a novel integral sliding mode surface is constructed such that the synchronization error can converge to zero in finite time along the constructed integral sliding mode surface. Second, a suitable sliding mode controller is designed by relying on Lyapunov stability theory such that all system state trajectories can be driven onto the predefined sliding mode surface in finite time. Moreover, it is found that the presented control approach can be conveniently verified and does not need to solve any linear matrix inequality (LMI) to guarantee the finite-time synchronization of delayed recurrent neural networks. Finally, three numerical examples are exploited to demonstrate the effectiveness of the presented control approach.
Collapse
|
29
|
Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks. MATHEMATICS 2020. [DOI: 10.3390/math8050801] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We study the global asymptotic stability problem with respect to the fractional-order quaternion-valued bidirectional associative memory neural network (FQVBAMNN) models in this paper. Whether the real and imaginary parts of quaternion-valued activation functions are expressed implicitly or explicitly, they are considered to meet the global Lipschitz condition in the quaternion field. New sufficient conditions are derived by applying the principle of homeomorphism, Lyapunov fractional-order method and linear matrix inequality (LMI) approach for the two cases of activation functions. The results confirm the existence, uniqueness and global asymptotic stability of the system’s equilibrium point. Finally, two numerical examples with their simulation results are provided to show the effectiveness of the obtained results.
Collapse
|
30
|
A Delay-Dividing Approach to Robust Stability of Uncertain Stochastic Complex-Valued Hopfield Delayed Neural Networks. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model.
Collapse
|
31
|
Li HL, Jiang H, Cao J. Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Xiao J, Wen S, Yang X, Zhong S. New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality. Neural Netw 2020; 122:320-337. [DOI: 10.1016/j.neunet.2019.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
|
33
|
Kobayashi M. Noise Robust Projection Rule for Hyperbolic Hopfield Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:352-356. [PMID: 30892249 DOI: 10.1109/tnnls.2019.2899914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex-valued Hopfield neural network (CHNN) is a multistate Hopfield model. Low noise tolerance is the main disadvantage of CHNNs. The hyperbolic Hopfield neural network (HHNN) is a noise robust multistate Hopfield model. In HHNNs employing the projection rule, noise tolerance rapidly worsened as the number of training patterns increased. This result was caused by the self-loops. The projection rule for CHNNs improves noise tolerance by removing the self-loops, however, that for HHNNs cannot remove them. In this brief, we extended the stability condition for the self-loops of HHNNs and modified the projection rule. Thus, the HHNNs had improved noise tolerance.
Collapse
|
34
|
Zheng B, Hu C, Yu J, Jiang H. Finite-time synchronization of fully complex-valued neural networks with fractional-order. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Chen J, Chen B, Zeng Z, Jiang P. Effects of Subsystem and Coupling on Synchronization of Multiple Neural Networks With Delays via Impulsive Coupling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:3748-3758. [PMID: 30892235 DOI: 10.1109/tnnls.2019.2898919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper from new perspectives discusses the global synchronization of multiple recurrent neural networks (MNNs) with time delays via impulsive coupling. A new concept (coupling strength) is introduced, it is a variable parameter and plays a key role on synchronization. The selection of coupling strength can bring more convenience to the design of the impulsive coupling controller. Four results are presented for the synchronization of MNNs with time delays by using impulsive coupling with the coupling gain and variable topology, where two results are dependent on topology and other two results are independent on topological connectivity. In our results, the effects of each NN, coupling topology, and coupling strength can be positive or negative role on synchronization. In addition, three examples are presented to test our results in the theory analysis.
Collapse
|
36
|
Huang C, Nie X, Zhao X, Song Q, Tu Z, Xiao M, Cao J. Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw 2019; 117:67-93. [DOI: 10.1016/j.neunet.2019.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
|
37
|
Finite Time Stability Analysis of Fractional-Order Complex-Valued Memristive Neural Networks with Proportional Delays. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10097-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Samidurai R, Sriraman R, Zhu S. Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.02.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Wu X, Huang L. Pinning Adaptive and Exponential Synchronization of Fractional-Order Uncertain Complex Neural Networks with Time-Varying Delays. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10014-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Wan P, Jian J. Impulsive Stabilization and Synchronization of Fractional-Order Complex-Valued Neural Networks. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10002-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Duan L, Shi M, Wang Z, Huang L. Global Exponential Synchronization of Delayed Complex-Valued Recurrent Neural Networks with Discontinuous Activations. Neural Process Lett 2019. [DOI: 10.1007/s11063-018-09970-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhang W, Zhang H, Cao J, Alsaadi FE, Chen D. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays. Neural Netw 2019; 110:186-198. [DOI: 10.1016/j.neunet.2018.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/13/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
|
43
|
Joghataie A, Shafiei Dizaji M. Neuro-Skins: Dynamics, Plasticity and Effect of Neuron Type and Cell Size on Their Response. Neural Process Lett 2019. [DOI: 10.1007/s11063-018-9795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Liu W, Jiang M, Yan M. Stability analysis of memristor-based time-delay fractional-order neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Wan P, Jian J. $$\alpha $$
α
-Exponential Stability of Impulsive Fractional-Order Complex-Valued Neural Networks with Time Delays. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.08.063] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Finite-time synchronization of fractional-order memristive recurrent neural networks with discontinuous activation functions. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Xu C, Li P. On Finite-Time Stability for Fractional-Order Neural Networks with Proportional Delays. Neural Process Lett 2018. [DOI: 10.1007/s11063-018-9917-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons. Neural Netw 2018; 105:88-103. [DOI: 10.1016/j.neunet.2018.04.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/12/2018] [Accepted: 04/20/2018] [Indexed: 11/15/2022]
|
50
|
Anti-synchronization of complex-valued memristor-based delayed neural networks. Neural Netw 2018; 105:1-13. [DOI: 10.1016/j.neunet.2018.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 11/23/2022]
|