1
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2025; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
2
|
Luppi AI, Liu ZQ, Milisav F, Bazinet V, Hansen J, Misic B. From abstract networks to biological realities. Phys Life Rev 2024; 49:12-14. [PMID: 38471192 DOI: 10.1016/j.plrev.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Filip Milisav
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vincent Bazinet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Wang Y, Wang Y, Zhang X, Du J, Zhang T, Xu B. Brain topology improved spiking neural network for efficient reinforcement learning of continuous control. Front Neurosci 2024; 18:1325062. [PMID: 38694900 PMCID: PMC11062182 DOI: 10.3389/fnins.2024.1325062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
The brain topology highly reflects the complex cognitive functions of the biological brain after million-years of evolution. Learning from these biological topologies is a smarter and easier way to achieve brain-like intelligence with features of efficiency, robustness, and flexibility. Here we proposed a brain topology-improved spiking neural network (BT-SNN) for efficient reinforcement learning. First, hundreds of biological topologies are generated and selected as subsets of the Allen mouse brain topology with the help of the Tanimoto hierarchical clustering algorithm, which has been widely used in analyzing key features of the brain connectome. Second, a few biological constraints are used to filter out three key topology candidates, including but not limited to the proportion of node functions (e.g., sensation, memory, and motor types) and network sparsity. Third, the network topology is integrated with the hybrid numerical solver-improved leaky-integrated and fire neurons. Fourth, the algorithm is then tuned with an evolutionary algorithm named adaptive random search instead of backpropagation to guide synaptic modifications without affecting raw key features of the topology. Fifth, under the test of four animal-survival-like RL tasks (i.e., dynamic controlling in Mujoco), the BT-SNN can achieve higher scores than not only counterpart SNN using random topology but also some classical ANNs (i.e., long-short-term memory and multi-layer perception). This result indicates that the research effort of incorporating biological topology and evolutionary learning rules has much in store for the future.
Collapse
Affiliation(s)
- Yongjian Wang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yansong Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinhe Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tielin Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Suárez LE, Mihalik A, Milisav F, Marshall K, Li M, Vértes PE, Lajoie G, Misic B. Connectome-based reservoir computing with the conn2res toolbox. Nat Commun 2024; 15:656. [PMID: 38253577 PMCID: PMC10803782 DOI: 10.1038/s41467-024-44900-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks. Reservoir computing is a versatile paradigm that uses high-dimensional, nonlinear dynamical systems to perform computations and approximate cognitive functions. Here we present conn2res: an open-source Python toolbox for implementing biological neural networks as artificial neural networks. conn2res is modular, allowing arbitrary network architecture and dynamics to be imposed. The toolbox allows researchers to input connectomes reconstructed using multiple techniques, from tract tracing to noninvasive diffusion imaging, and to impose multiple dynamical systems, from spiking neurons to memristive dynamics. The versatility of the conn2res toolbox allows us to ask new questions at the confluence of neuroscience and artificial intelligence. By reconceptualizing function as computation, conn2res sets the stage for a more mechanistic understanding of structure-function relationships in brain networks.
Collapse
Affiliation(s)
- Laura E Suárez
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Agoston Mihalik
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Filip Milisav
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kenji Marshall
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mingze Li
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Guillaume Lajoie
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montreal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Bernáez Timón L, Ekelmans P, Kraynyukova N, Rose T, Busse L, Tchumatchenko T. How to incorporate biological insights into network models and why it matters. J Physiol 2023; 601:3037-3053. [PMID: 36069408 DOI: 10.1113/jp282755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to the staggering complexity of the brain and its neural circuitry, neuroscientists rely on the analysis of mathematical models to elucidate its function. From Hodgkin and Huxley's detailed description of the action potential in 1952 to today, new theories and increasing computational power have opened up novel avenues to study how neural circuits implement the computations that underlie behaviour. Computational neuroscientists have developed many models of neural circuits that differ in complexity, biological realism or emergent network properties. With recent advances in experimental techniques for detailed anatomical reconstructions or large-scale activity recordings, rich biological data have become more available. The challenge when building network models is to reflect experimental results, either through a high level of detail or by finding an appropriate level of abstraction. Meanwhile, machine learning has facilitated the development of artificial neural networks, which are trained to perform specific tasks. While they have proven successful at achieving task-oriented behaviour, they are often abstract constructs that differ in many features from the physiology of brain circuits. Thus, it is unclear whether the mechanisms underlying computation in biological circuits can be investigated by analysing artificial networks that accomplish the same function but differ in their mechanisms. Here, we argue that building biologically realistic network models is crucial to establishing causal relationships between neurons, synapses, circuits and behaviour. More specifically, we advocate for network models that consider the connectivity structure and the recorded activity dynamics while evaluating task performance.
Collapse
Affiliation(s)
- Laura Bernáez Timón
- Institute for Physiological Chemistry, University of Mainz Medical Center, Mainz, Germany
| | - Pierre Ekelmans
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Nataliya Kraynyukova
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Tobias Rose
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Tatjana Tchumatchenko
- Institute for Physiological Chemistry, University of Mainz Medical Center, Mainz, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
6
|
Surianarayanan C, Lawrence JJ, Chelliah PR, Prakash E, Hewage C. Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders-A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3062. [PMID: 36991773 PMCID: PMC10053494 DOI: 10.3390/s23063062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Artificial intelligence (AI) is a field of computer science that deals with the simulation of human intelligence using machines so that such machines gain problem-solving and decision-making capabilities similar to that of the human brain. Neuroscience is the scientific study of the struczture and cognitive functions of the brain. Neuroscience and AI are mutually interrelated. These two fields help each other in their advancements. The theory of neuroscience has brought many distinct improvisations into the AI field. The biological neural network has led to the realization of complex deep neural network architectures that are used to develop versatile applications, such as text processing, speech recognition, object detection, etc. Additionally, neuroscience helps to validate the existing AI-based models. Reinforcement learning in humans and animals has inspired computer scientists to develop algorithms for reinforcement learning in artificial systems, which enables those systems to learn complex strategies without explicit instruction. Such learning helps in building complex applications, like robot-based surgery, autonomous vehicles, gaming applications, etc. In turn, with its ability to intelligently analyze complex data and extract hidden patterns, AI fits as a perfect choice for analyzing neuroscience data that are very complex. Large-scale AI-based simulations help neuroscientists test their hypotheses. Through an interface with the brain, an AI-based system can extract the brain signals and commands that are generated according to the signals. These commands are fed into devices, such as a robotic arm, which helps in the movement of paralyzed muscles or other human parts. AI has several use cases in analyzing neuroimaging data and reducing the workload of radiologists. The study of neuroscience helps in the early detection and diagnosis of neurological disorders. In the same way, AI can effectively be applied to the prediction and detection of neurological disorders. Thus, in this paper, a scoping review has been carried out on the mutual relationship between AI and neuroscience, emphasizing the convergence between AI and neuroscience in order to detect and predict various neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Edmond Prakash
- Research Center for Creative Arts, University for the Creative Arts (UCA), Farnham GU9 7DS, UK
| | - Chaminda Hewage
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| |
Collapse
|
7
|
Singh SH, van Breugel F, Rao RPN, Brunton BW. Emergent behaviour and neural dynamics in artificial agents tracking odour plumes. NAT MACH INTELL 2023; 5:58-70. [PMID: 37886259 PMCID: PMC10601839 DOI: 10.1038/s42256-022-00599-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 12/01/2022] [Indexed: 01/26/2023]
Abstract
Tracking an odour plume to locate its source under variable wind and plume statistics is a complex task. Flying insects routinely accomplish such tracking, often over long distances, in pursuit of food or mates. Several aspects of this remarkable behaviour and its underlying neural circuitry have been studied experimentally. Here we take a complementary in silico approach to develop an integrated understanding of their behaviour and neural computations. Specifically, we train artificial recurrent neural network agents using deep reinforcement learning to locate the source of simulated odour plumes that mimic features of plumes in a turbulent flow. Interestingly, the agents' emergent behaviours resemble those of flying insects, and the recurrent neural networks learn to compute task-relevant variables with distinct dynamic structures in population activity. Our analyses put forward a testable behavioural hypothesis for tracking plumes in changing wind direction, and we provide key intuitions for memory requirements and neural dynamics in odour plume tracking.
Collapse
|
8
|
Qiao J, Jiang YT, Dai Y, Gong YB, Dai M, Liu YX, Dou ZL. Research on a real-time dynamic monitoring method for silent aspiration after stroke based on semisupervised deep learning: A protocol study. Digit Health 2023; 9:20552076231183548. [PMID: 37434729 PMCID: PMC10331777 DOI: 10.1177/20552076231183548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Objective This study aims to establish a real-time dynamic monitoring system for silent aspiration (SA) to provide evidence for the early diagnosis of and precise intervention for SA after stroke. Methods Multisource signals, including sound, nasal airflow, electromyographic, pressure and acceleration signals, will be obtained by multisource sensors during swallowing events. The extracted signals will be labeled according to videofluoroscopic swallowing studies (VFSSs) and input into a special dataset. Then, a real-time dynamic monitoring model for SA will be built and trained based on semisupervised deep learning. Model optimization will be performed based on the mapping relationship between multisource signals and insula-centered cerebral cortex-brainstem functional connectivity through resting-state functional magnetic resonance imaging. Finally, a real-time dynamic monitoring system for SA will be established, of which the sensitivity and specificity will be improved by clinical application. Results Multisource signals will be stably extracted by multisource sensors. Data from a total of 3200 swallows will be obtained from patients with SA, including 1200 labeled swallows from the nonaspiration category from VFSSs and 2000 unlabeled swallows. A significant difference in the multisource signals is expected to be found between the SA and nonaspiration groups. The features of labeled and pseudolabeled multisource signals will be extracted through semisupervised deep learning to establish a dynamic monitoring model for SA. Moreover, strong correlations are expected to be found between the Granger causality analysis (GCA) value (from the left middle frontal gyrus to the right anterior insula) and the laryngeal rise time (LRT). Finally, a dynamic monitoring system will be established based on the former model, by which SA can be identified precisely. Conclusion The study will establish a real-time dynamic monitoring system for SA with high sensitivity, specificity, accuracy and F1 score.
Collapse
Affiliation(s)
- Jia Qiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Yuan-tong Jiang
- School of Software Engineering, South China University of Technology
| | - Yong Dai
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine
| | - Yan-bin Gong
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
| | - Meng Dai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University
| | - Yan-xia Liu
- School of Software Engineering, South China University of Technology
| | - Zu-lin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University
| |
Collapse
|
9
|
Doya K, Friston K, Sugiyama M, Tenenbaum J. Neural Networks special issue on Artificial Intelligence and Brain Science. Neural Netw 2022; 155:328-329. [PMID: 36099665 DOI: 10.1016/j.neunet.2022.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Doya
- Okinawa Institute of Science and Technology Graduate University, Japan.
| | | | | | - Josh Tenenbaum
- Massachusetts Institute of Technology, United States of America
| |
Collapse
|
10
|
Evaluating the ability of the NLHA2 and artificial neural network models to predict COVID-19 severity, and comparing them with the four existing scoring systems. Microb Pathog 2022; 171:105735. [PMID: 36007846 PMCID: PMC9395227 DOI: 10.1016/j.micpath.2022.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/08/2023]
Abstract
To improve the identification and subsequent intervention of COVID-19 patients at risk for ICU admission, we constructed COVID-19 severity prediction models using logistic regression and artificial neural network (ANN) analysis and compared them with the four existing scoring systems (PSI, CURB-65, SMARTCOP, and MuLBSTA). In this prospective multi-center study, 296 patients with COVID-19 pneumonia were enrolled and split into the General-Ward-Care group (N = 238) and the ICU-Admission group (N = 58). The PSI model (AUC = 0.861) had the best results among the existing four scoring systems, followed by SMARTCOP (AUC = 0.770), motified-MuLBSTA (AUC = 0.761), and CURB-65 (AUC = 0.712). Data from 197 patients (training set) were analyzed for modeling. The beta coefficients from logistic regression were used to develop a severity prediction model and risk score calculator. The final model (NLHA2) included five covariates (consumes alcohol, neutrophil count, lymphocyte count, hemoglobin, and AKP). The NLHA2 model (training: AUC = 0.959; testing: AUC = 0.857) had similar results to the PSI model, but with fewer variable items. ANN analysis was used to build another complex model, which had higher accuracy (training: AUC = 1.000; testing: AUC = 0.907). Discrimination and calibration were further verified through bootstrapping (2000 replicates), Hosmer-Lemeshow goodness of fit testing, and Brier score calculation. In conclusion, the PSI model is the best existing system for predicting ICU admission among COVID-19 patients, while two newly-designed models (NLHA2 and ANN) performed better than PSI, and will provide a new approach for the development of prognostic evaluation system in a novel respiratory viral epidemic.
Collapse
|
11
|
Development of an Artificial Neural Network for the Detection of Supporting Hindlimb Lameness: A Pilot Study in Working Dogs. Animals (Basel) 2022; 12:ani12141755. [PMID: 35883302 PMCID: PMC9311578 DOI: 10.3390/ani12141755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Subjective lameness assessment has been a controversial subject given the lack of agreement between observers; this has prompted the development of kinetic and kinematic devices in order to obtain an objective evaluation of locomotor system in dogs. After proper training, neural networks are potentially capable of making a non-human diagnosis of canine lameness. The purpose of this study was to investigate whether artificial neural networks could be used to determine canine hindlimb lameness by computational means only. The outcome of this study could potentially assess the efficacy of certain treatments against diseases that cause lameness. With this aim, input data were obtained from an inertial sensor positioned on the rump. Data from dogs with unilateral hindlimb lameness and sound dogs were used to obtain differences between both groups at walk. The artificial neural network, after necessary adjustments, was integrated into a web management tool, and the preliminary results discriminating between lame and sound dogs are promising. The analysis of spatial data with artificial neural networks was summarized and developed into a web app that has proven to be a useful tool to discriminate between sound and lame dogs. Additionally, this environment allows veterinary clinicians to adequately follow the treatment of lame canine patients.
Collapse
|
12
|
Fakhar K, Hilgetag CC. Systematic perturbation of an artificial neural network: A step towards quantifying causal contributions in the brain. PLoS Comput Biol 2022; 18:e1010250. [PMID: 35714139 PMCID: PMC9246164 DOI: 10.1371/journal.pcbi.1010250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/30/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Lesion inference analysis is a fundamental approach for characterizing the causal contributions of neural elements to brain function. This approach has gained new prominence through the arrival of modern perturbation techniques with unprecedented levels of spatiotemporal precision. While inferences drawn from brain perturbations are conceptually powerful, they face methodological difficulties. Particularly, they are challenged to disentangle the true causal contributions of the involved elements, since often functions arise from coalitions of distributed, interacting elements, and localized perturbations have unknown global consequences. To elucidate these limitations, we systematically and exhaustively lesioned a small artificial neural network (ANN) playing a classic arcade game. We determined the functional contributions of all nodes and links, contrasting results from sequential single-element perturbations with simultaneous perturbations of multiple elements. We found that lesioning individual elements, one at a time, produced biased results. By contrast, multi-site lesion analysis captured crucial details that were missed by single-site lesions. We conclude that even small and seemingly simple ANNs show surprising complexity that needs to be addressed by multi-lesioning for a coherent causal characterization.
Collapse
Affiliation(s)
- Kayson Fakhar
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Hipólito I. Cognition Without Neural Representation: Dynamics of a Complex System. Front Psychol 2022; 12:643276. [PMID: 35095629 PMCID: PMC8789682 DOI: 10.3389/fpsyg.2021.643276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
This paper proposes an account of neurocognitive activity without leveraging the notion of neural representation. Neural representation is a concept that results from assuming that the properties of the models used in computational cognitive neuroscience (e.g., information, representation, etc.) must literally exist the system being modelled (e.g., the brain). Computational models are important tools to test a theory about how the collected data (e.g., behavioural or neuroimaging) has been generated. While the usefulness of computational models is unquestionable, it does not follow that neurocognitive activity should literally entail the properties construed in the model (e.g., information, representation). While this is an assumption present in computationalist accounts, it is not held across the board in neuroscience. In the last section, the paper offers a dynamical account of neurocognitive activity with Dynamical Causal Modelling (DCM) that combines dynamical systems theory (DST) mathematical formalisms with the theoretical contextualisation provided by Embodied and Enactive Cognitive Science (EECS).
Collapse
Affiliation(s)
- Inês Hipólito
- Berlin School of Mind and Brain, Institut für Philosophie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Nenning KH, Langs G. Machine learning in neuroimaging: from research to clinical practice. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:1-10. [PMID: 36044070 PMCID: PMC9732070 DOI: 10.1007/s00117-022-01051-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Neuroimaging is critical in clinical care and research, enabling us to investigate the brain in health and disease. There is a complex link between the brain's morphological structure, physiological architecture, and the corresponding imaging characteristics. The shape, function, and relationships between various brain areas change during development and throughout life, disease, and recovery. Like few other areas, neuroimaging benefits from advanced analysis techniques to fully exploit imaging data for studying the brain and its function. Recently, machine learning has started to contribute (a) to anatomical measurements, detection, segmentation, and quantification of lesions and disease patterns, (b) to the rapid identification of acute conditions such as stroke, or (c) to the tracking of imaging changes over time. As our ability to image and analyze the brain advances, so does our understanding of its intricate relationships and their role in therapeutic decision-making. Here, we review the current state of the art in using machine learning techniques to exploit neuroimaging data for clinical care and research, providing an overview of clinical applications and their contribution to fundamental computational neuroscience.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|