1
|
Mingard C, Rees H, Valle-Pérez G, Louis AA. Deep neural networks have an inbuilt Occam's razor. Nat Commun 2025; 16:220. [PMID: 39809746 PMCID: PMC11733143 DOI: 10.1038/s41467-024-54813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
The remarkable performance of overparameterized deep neural networks (DNNs) must arise from an interplay between network architecture, training algorithms, and structure in the data. To disentangle these three components for supervised learning, we apply a Bayesian picture based on the functions expressed by a DNN. The prior over functions is determined by the network architecture, which we vary by exploiting a transition between ordered and chaotic regimes. For Boolean function classification, we approximate the likelihood using the error spectrum of functions on data. Combining this with the prior yields an accurate prediction for the posterior, measured for DNNs trained with stochastic gradient descent. This analysis shows that structured data, together with a specific Occam's razor-like inductive bias towards (Kolmogorov) simple functions that exactly counteracts the exponential growth of the number of functions with complexity, is a key to the success of DNNs.
Collapse
Affiliation(s)
- Chris Mingard
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Henry Rees
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | | | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Susan S. Neuroscientific insights about computer vision models: a concise review. BIOLOGICAL CYBERNETICS 2024; 118:331-348. [PMID: 39382577 DOI: 10.1007/s00422-024-00998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The development of biologically-inspired computational models has been the focus of study ever since the artificial neuron was introduced by McCulloch and Pitts in 1943. However, a scrutiny of literature reveals that most attempts to replicate the highly efficient and complex biological visual system have been futile or have met with limited success. The recent state-of the-art computer vision models, such as pre-trained deep neural networks and vision transformers, may not be biologically inspired per se. Nevertheless, certain aspects of biological vision are still found embedded, knowingly or unknowingly, in the architecture and functioning of these models. This paper explores several principles related to visual neuroscience and the biological visual pathway that resonate, in some manner, in the architectural design and functioning of contemporary computer vision models. The findings of this survey can provide useful insights for building futuristic bio-inspired computer vision models. The survey is conducted from a historical perspective, tracing the biological connections of computer vision models starting with the basic artificial neuron to modern technologies such as deep convolutional neural network (CNN) and spiking neural networks (SNN). One spotlight of the survey is a discussion on biologically plausible neural networks and bio-inspired unsupervised learning mechanisms adapted for computer vision tasks in recent times.
Collapse
Affiliation(s)
- Seba Susan
- Department of Information Technology, Delhi Technological University, Delhi, India.
| |
Collapse
|
3
|
Bowers JS, Malhotra G, Dujmović M, Montero ML, Tsvetkov C, Biscione V, Puebla G, Adolfi F, Hummel JE, Heaton RF, Evans BD, Mitchell J, Blything R. Clarifying status of DNNs as models of human vision. Behav Brain Sci 2023; 46:e415. [PMID: 38054298 DOI: 10.1017/s0140525x23002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
On several key issues we agree with the commentators. Perhaps most importantly, everyone seems to agree that psychology has an important role to play in building better models of human vision, and (most) everyone agrees (including us) that deep neural networks (DNNs) will play an important role in modelling human vision going forward. But there are also disagreements about what models are for, how DNN-human correspondences should be evaluated, the value of alternative modelling approaches, and impact of marketing hype in the literature. In our view, these latter issues are contributing to many unjustified claims regarding DNN-human correspondences in vision and other domains of cognition. We explore all these issues in this response.
Collapse
Affiliation(s)
- Jeffrey S Bowers
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Gaurav Malhotra
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Marin Dujmović
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Milton L Montero
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Christian Tsvetkov
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Valerio Biscione
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | | | - Federico Adolfi
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - John E Hummel
- Psychology Department, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Rachel F Heaton
- Psychology Department, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Benjamin D Evans
- Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Jeffrey Mitchell
- Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Ryan Blything
- School of Psychology, Aston University, Birmingham, UK
| |
Collapse
|
4
|
Farahat A, Effenberger F, Vinck M. A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations. Neural Netw 2023; 167:400-414. [PMID: 37673027 PMCID: PMC7616855 DOI: 10.1016/j.neunet.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 08/13/2023] [Indexed: 09/08/2023]
Abstract
Convolutional neural networks (CNNs) are one of the most successful computer vision systems to solve object recognition. Furthermore, CNNs have major applications in understanding the nature of visual representations in the human brain. Yet it remains poorly understood how CNNs actually make their decisions, what the nature of their internal representations is, and how their recognition strategies differ from humans. Specifically, there is a major debate about the question of whether CNNs primarily rely on surface regularities of objects, or whether they are capable of exploiting the spatial arrangement of features, similar to humans. Here, we develop a novel feature-scrambling approach to explicitly test whether CNNs use the spatial arrangement of features (i.e. object parts) to classify objects. We combine this approach with a systematic manipulation of effective receptive field sizes of CNNs as well as minimal recognizable configurations (MIRCs) analysis. In contrast to much previous literature, we provide evidence that CNNs are in fact capable of using relatively long-range spatial relationships for object classification. Moreover, the extent to which CNNs use spatial relationships depends heavily on the dataset, e.g. texture vs. sketch. In fact, CNNs even use different strategies for different classes within heterogeneous datasets (ImageNet), suggesting CNNs have a continuous spectrum of classification strategies. Finally, we show that CNNs learn the spatial arrangement of features only up to an intermediate level of granularity, which suggests that intermediate rather than global shape features provide the optimal trade-off between sensitivity and specificity in object classification. These results provide novel insights into the nature of CNN representations and the extent to which they rely on the spatial arrangement of features for object classification.
Collapse
Affiliation(s)
- Amr Farahat
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University, Nijmegen, The Netherlands.
| | - Felix Effenberger
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany; Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Abstract
Deep neural networks (DNNs) are machine learning algorithms that have revolutionized computer vision due to their remarkable successes in tasks like object classification and segmentation. The success of DNNs as computer vision algorithms has led to the suggestion that DNNs may also be good models of human visual perception. In this article, we review evidence regarding current DNNs as adequate behavioral models of human core object recognition. To this end, we argue that it is important to distinguish between statistical tools and computational models and to understand model quality as a multidimensional concept in which clarity about modeling goals is key. Reviewing a large number of psychophysical and computational explorations of core object recognition performance in humans and DNNs, we argue that DNNs are highly valuable scientific tools but that, as of today, DNNs should only be regarded as promising-but not yet adequate-computational models of human core object recognition behavior. On the way, we dispel several myths surrounding DNNs in vision science.
Collapse
Affiliation(s)
- Felix A Wichmann
- Neural Information Processing Group, University of Tübingen, Tübingen, Germany;
| | | |
Collapse
|
6
|
Doerig A, Sommers RP, Seeliger K, Richards B, Ismael J, Lindsay GW, Kording KP, Konkle T, van Gerven MAJ, Kriegeskorte N, Kietzmann TC. The neuroconnectionist research programme. Nat Rev Neurosci 2023:10.1038/s41583-023-00705-w. [PMID: 37253949 DOI: 10.1038/s41583-023-00705-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have been not only lauded as the current best models of information processing in the brain but also criticized for failing to account for basic cognitive functions. In this Perspective article, we propose that arguing about the successes and failures of a restricted set of current ANNs is the wrong approach to assess the promise of neuroconnectionism for brain science. Instead, we take inspiration from the philosophy of science, and in particular from Lakatos, who showed that the core of a scientific research programme is often not directly falsifiable but should be assessed by its capacity to generate novel insights. Following this view, we present neuroconnectionism as a general research programme centred around ANNs as a computational language for expressing falsifiable theories about brain computation. We describe the core of the programme, the underlying computational framework and its tools for testing specific neuroscientific hypotheses and deriving novel understanding. Taking a longitudinal view, we review past and present neuroconnectionist projects and their responses to challenges and argue that the research programme is highly progressive, generating new and otherwise unreachable insights into the workings of the brain.
Collapse
Affiliation(s)
- Adrien Doerig
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Rowan P Sommers
- Department of Neurobiology of Language, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Katja Seeliger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Blake Richards
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- School of Computer Science, McGill University, Montréal, QC, Canada
- Mila, Montréal, QC, Canada
- Montréal Neurological Institute, Montréal, QC, Canada
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
| | | | | | - Konrad P Kording
- Learning in Machines and Brains Program, CIFAR, Toronto, ON, Canada
- Bioengineering, Neuroscience, University of Pennsylvania, Pennsylvania, PA, USA
| | | | | | | | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
7
|
Tsvetkov C, Malhotra G, Evans BD, Bowers JS. The role of capacity constraints in Convolutional Neural Networks for learning random versus natural data. Neural Netw 2023; 161:515-524. [PMID: 36805266 DOI: 10.1016/j.neunet.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Convolutional neural networks (CNNs) are often described as promising models of human vision, yet they show many differences from human abilities. We focus on a superhuman capacity of top-performing CNNs, namely, their ability to learn very large datasets of random patterns. We verify that human learning on such tasks is extremely limited, even with few stimuli. We argue that the performance difference is due to CNNs' overcapacity and introduce biologically inspired mechanisms to constrain it, while retaining the good test set generalisation to structured images as characteristic of CNNs. We investigate the efficacy of adding noise to hidden units' activations, restricting early convolutional layers with a bottleneck, and using a bounded activation function. Internal noise was the most potent intervention and the only one which, by itself, could reduce random data performance in the tested models to chance levels. We also investigated whether networks with biologically inspired capacity constraints show improved generalisation to out-of-distribution stimuli, however little benefit was observed. Our results suggest that constraining networks with biologically motivated mechanisms paves the way for closer correspondence between network and human performance, but the few manipulations we have tested are only a small step towards that goal.
Collapse
Affiliation(s)
- Christian Tsvetkov
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| | - Gaurav Malhotra
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| | - Benjamin D Evans
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK; Department of Informatics, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9RH, UK.
| | - Jeffrey S Bowers
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| |
Collapse
|
8
|
Bowers JS, Malhotra G, Dujmović M, Llera Montero M, Tsvetkov C, Biscione V, Puebla G, Adolfi F, Hummel JE, Heaton RF, Evans BD, Mitchell J, Blything R. Deep problems with neural network models of human vision. Behav Brain Sci 2022; 46:e385. [PMID: 36453586 DOI: 10.1017/s0140525x22002813] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Deep neural networks (DNNs) have had extraordinary successes in classifying photographic images of objects and are often described as the best models of biological vision. This conclusion is largely based on three sets of findings: (1) DNNs are more accurate than any other model in classifying images taken from various datasets, (2) DNNs do the best job in predicting the pattern of human errors in classifying objects taken from various behavioral datasets, and (3) DNNs do the best job in predicting brain signals in response to images taken from various brain datasets (e.g., single cell responses or fMRI data). However, these behavioral and brain datasets do not test hypotheses regarding what features are contributing to good predictions and we show that the predictions may be mediated by DNNs that share little overlap with biological vision. More problematically, we show that DNNs account for almost no results from psychological research. This contradicts the common claim that DNNs are good, let alone the best, models of human object recognition. We argue that theorists interested in developing biologically plausible models of human vision need to direct their attention to explaining psychological findings. More generally, theorists need to build models that explain the results of experiments that manipulate independent variables designed to test hypotheses rather than compete on making the best predictions. We conclude by briefly summarizing various promising modeling approaches that focus on psychological data.
Collapse
Affiliation(s)
- Jeffrey S Bowers
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Gaurav Malhotra
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Marin Dujmović
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Milton Llera Montero
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Christian Tsvetkov
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Valerio Biscione
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Guillermo Puebla
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
| | - Federico Adolfi
- School of Psychological Science, University of Bristol, Bristol, UK ; https://jeffbowers.blogs.bristol.ac.uk/
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - John E Hummel
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Rachel F Heaton
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Benjamin D Evans
- Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Jeffrey Mitchell
- Department of Informatics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Ryan Blything
- School of Psychology, Aston University, Birmingham, UK
| |
Collapse
|
9
|
Doya K, Friston K, Sugiyama M, Tenenbaum J. Neural Networks special issue on Artificial Intelligence and Brain Science. Neural Netw 2022; 155:328-329. [PMID: 36099665 DOI: 10.1016/j.neunet.2022.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Doya
- Okinawa Institute of Science and Technology Graduate University, Japan.
| | | | | | - Josh Tenenbaum
- Massachusetts Institute of Technology, United States of America
| |
Collapse
|