1
|
Yin Y, Luo S, Zhou J, Kang L, Chen CYC. LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation. Neural Netw 2024; 170:441-452. [PMID: 38039682 DOI: 10.1016/j.neunet.2023.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Medical image segmentation is fundamental for modern healthcare systems, especially for reducing the risk of surgery and treatment planning. Transanal total mesorectal excision (TaTME) has emerged as a recent focal point in laparoscopic research, representing a pivotal modality in the therapeutic arsenal for the treatment of colon & rectum cancers. Real-time instance segmentation of surgical imagery during TaTME procedures can serve as an invaluable tool in assisting surgeons, ultimately reducing surgical risks. The dynamic variations in size and shape of anatomical structures within intraoperative images pose a formidable challenge, rendering the precise instance segmentation of TaTME images a task of considerable complexity. Deep learning has exhibited its efficacy in Medical image segmentation. However, existing models have encountered challenges in concurrently achieving a satisfactory level of accuracy while maintaining manageable computational complexity in the context of TaTME data. To address this conundrum, we propose a lightweight dynamic convolution Network (LDCNet) that has the same superior segmentation performance as the state-of-the-art (SOTA) medical image segmentation network while running at the speed of the lightweight convolutional neural network. Experimental results demonstrate the promising performance of LDCNet, which consistently exceeds previous SOTA approaches. Codes are available at github.com/yinyiyang416/LDCNet.
Collapse
Affiliation(s)
- Yiyang Yin
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shuangling Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, Guangzhou, 510655, Guangdong, China; The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jun Zhou
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, Guangzhou, 510655, Guangdong, China; The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Calvin Yu-Chian Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; AI for Science (AI4S) - Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China; Department of Medical Research, China Medical University Hospital, Taichung, 40447, Guangdong, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
2
|
Sun B, Chen Y, Zhou G, Cao Z, Yang C, Du J, Chen X, Shao J. Memristor-Based Artificial Chips. ACS NANO 2024; 18:14-27. [PMID: 38153841 DOI: 10.1021/acsnano.3c07384] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Memristors, promising nanoelectronic devices with in-memory resistive switching behavior that is assembled with a physically integrated core processing unit (CPU) and memory unit and even possesses highly possible multistate electrical behavior, could avoid the von Neumann bottleneck of traditional computing devices and show a highly efficient ability of parallel computation and high information storage. These advantages position them as potential candidates for future data-centric computing requirements and add remarkable vigor to the research of next-generation artificial intelligence (AI) systems, particularly those that involve brain-like intelligence applications. This work provides an overview of the evolution of memristor-based devices, from their initial use in creating artificial synapses and neural networks to their application in developing advanced AI systems and brain-like chips. It offers a broad perspective of the key device primitives enabling their special applications from the view of materials, nanostructure, and mechanism models. We highlight these demonstrations of memristor-based nanoelectronic devices that have potential for use in the field of brain-like AI, point out the existing challenges of memristor-based nanodevices toward brain-like chips, and propose the guiding principle and promising outlook for future device promotion and system optimization in the biomedical AI field.
Collapse
Affiliation(s)
- Bai Sun
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing 400715, People's Republic of China
| | - Zelin Cao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Junmei Du
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Xiaoliang Chen
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|