1
|
Kilic ME, Arayici ME, Turan OE, Yilancioglu YR, Ozcan EE, Yilmaz MB. Diagnostic accuracy of machine learning algorithms in electrocardiogram-based sleep apnea detection: A systematic review and meta-analysis. Sleep Med Rev 2025; 81:102097. [PMID: 40349509 DOI: 10.1016/j.smrv.2025.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
Sleep apnea is a prevalent disorder affecting 10 % of middle-aged individuals, yet it remains underdiagnosed due to the limitations of polysomnography (PSG), the current diagnostic gold standard. Single-lead electrocardiography (ECG) has been proposed as a potential alternative diagnostic tool, but interpretation challenges remain. Recent advances in machine learning and deep learning technologies offer promising approaches for enhancing the detection of sleep apnea through automated analysis of ECG signals. This meta-analysis aims to evaluate the diagnostic accuracy of machine learning (ML) and deep learning (DL) algorithms in detecting sleep apnea patterns from single-lead ECG data. A comprehensive literature search across multiple databases was conducted through November 2023, adhering to PRISMA-DTA guidelines. Studies that included sensitivity and specificity data for ECG-based sleep apnea detection using (machine learning/deep learning) ML/DL were selected. The analysis included 84 studies, demonstrating high diagnostic accuracy for ML/DL algorithms, with pooled sensitivity and specificity of over 90 % in per-segment analysis and close to 97 % in per-record analysis. Despite strong diagnostic performance, variations in algorithm effectiveness and methodological biases were noted. This meta-analysis highlights the potential of ML and DL in improving sleep apnea diagnosis and outlines areas for future research to address current limitations.
Collapse
Affiliation(s)
- Mustafa Eray Kilic
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Oguzhan Ekrem Turan
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | | | - Emin Evren Ozcan
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| | - Mehmet Birhan Yilmaz
- Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye.
| |
Collapse
|
2
|
Hu S, Wang Y, Liu J, Cui Z, Yang C, Yao Z, Ge J. IPCT-Net: Parallel information bottleneck modality fusion network for obstructive sleep apnea diagnosis. Neural Netw 2025; 181:106836. [PMID: 39471579 DOI: 10.1016/j.neunet.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/14/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep breathing disorder and timely diagnosis helps to avoid the serious medical expenses caused by related complications. Existing deep learning (DL)-based methods primarily focus on single-modal models, which cannot fully mine task-related representations. This paper develops a modality fusion representation enhancement (MFRE) framework adaptable to flexible modality fusion types with the objective of improving OSA diagnostic performance, and providing quantitative evidence for clinical diagnostic modality selection. The proposed parallel information bottleneck modality fusion network (IPCT-Net) can extract local-global multi-view representations and eliminate redundant information in modality fusion representations through branch sharing mechanisms. We utilize large-scale real-world home sleep apnea test (HSAT) multimodal data to comprehensively evaluate relevant modality fusion types. Extensive experiments demonstrate that the proposed method significantly outperforms existing methods in terms of participant numbers and OSA diagnostic performance. The proposed MFRE framework delves into modality fusion in OSA diagnosis and contributes to enhancing the screening performance of artificial intelligence (AI)-assisted diagnosis for OSA.
Collapse
Affiliation(s)
- Shuaicong Hu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yanan Wang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Liu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuiwei Yang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200093, China.
| | - Zhifeng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Tyagi PK, Agrawal D. Automatic detection of sleep apnea from a single-lead ECG signal based on spiking neural network model. Comput Biol Med 2024; 179:108877. [PMID: 39029435 DOI: 10.1016/j.compbiomed.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Sleep apnea (SLA) is a commonly encountered sleep disorder characterized by repetitive cessation of respiration while sleeping. In the past few years, researchers have focused on developing less complex and more cost-effective diagnostic approaches for identifying SLA recipients, in contrast to the cumbersome, complicated, and expensive conventional methods. METHOD This study presents a biologically plausible learning approach of spiking neural networks (SNN) with temporal coding and a tempotron learning model for diagnosing SLA disorder using single-lead electrocardiogram (ECG) data information. The proposed framework utilizes temporal encoding and the leaky integrate and fire model to transform the ECG signal into spikes for capturing the signal's dynamic pattern nature and to simulate input response behaviors. The tempoton learning technique, a spike-based algorithm, trains the SNN model to identify SLA event patterns from encoded output spike trains. This study utilized ECG data to extract heart rate variability (HRV) and ECG-derived respiration (EDR) signals from 1-min segment data of ECG records for input to SNN model. Thirty-five recordings of both released and withheld data from the Apnea-ECG databases from Physionet have been applied to train the SNN model and validate the model's efficacy in identifying SLA occurrences. RESULTS The proposed method demonstrated substantial improvements compared to other SLA detection techniques, achieving a significant accuracy of 94.63 % for per-segment detection, along with specificity, sensitivity, F1-score and AUC values of 96.21 %, 92.04 %, 0.9285, and 0.9851 respectively. The accuracy for per-recording detection achieved 100 %, with a correlation coefficient value of 0.986. Additionally, the experiment used UCD data for validation methods, achieving an accuracy of 84.573 %. CONCLUSIONS These results suggest the effectiveness and accessibility of the presented approach for accurately identifying SLA cases. The suggested model enhances the performance of SLA detection when contrasted with various techniques based on feature engineering and feature learning.
Collapse
Affiliation(s)
- Praveen Kumar Tyagi
- Dept. of ECE, Maulana Azad National Institute of Technology, Bhopal, MP, India.
| | - Dheeraj Agrawal
- Dept. of ECE, Maulana Azad National Institute of Technology, Bhopal, MP, India
| |
Collapse
|
4
|
Nguyen HX, Nguyen DV, Pham HH, Do CD. MPCNN: A Novel Matrix Profile Approach for CNN-based Single Lead Sleep Apnea in Classification Problem. IEEE J Biomed Health Inform 2024; 28:4878-4890. [PMID: 38713565 DOI: 10.1109/jbhi.2024.3397653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Sleep apnea (SA) is a significant respiratory condition that poses a major global health challenge. Deep Learning (DL) has emerged as an efficient tool for the classification problem in electrocardiogram (ECG)-based SA diagnoses. Despite these advancements, most common conventional feature extractions derived from ECG signals in DL, such as R-peaks and RR intervals, may fail to capture crucial information encompassed within the complete ECG segments. In this study, we propose an innovative approach to address this diagnostic gap by delving deeper into the comprehensive segments of the ECG signal. The proposed methodology draws inspiration from Matrix Profile algorithms, which generate an Euclidean distance profile from fixed-length signal subsequences. From this, we derived the Min Distance Profile (MinDP), Max Distance Profile (MaxDP), and Mean Distance Profile (MeanDP) based on the minimum, maximum, and mean of the profile distances, respectively. To validate the effectiveness of our approach, we use the modified LeNet-5 architecture as the primary CNN model, along with two existing lightweight models, BAFNet and SE-MSCNN. Our experiment results on the PhysioNet Apnea-ECG dataset (70 overnight recordings), and the UCDDB dataset (25 overnight recordings) revealed that our new feature extraction method achieved per-segment accuracies of up to 92.11% and 81.25%, respectively. Moreover, using the PhysioNet data, we achieved a per-recording accuracy of 100% and yielded the highest correlation of 0.989 compared to state-of-the-art methods. By introducing a new feature extraction method based on distance relationships, we enhanced the performance of certain lightweight models in DL, showing potential for home sleep apnea test (HSAT) and SA detection in IoT devices. The source code for this work is made publicly available in GitHub: https://github.com/vinuni-vishc/MPCNN-Sleep-Apnea.
Collapse
|
5
|
Li P, Ma W, Yue H, Lei W, Fan X, Li Y. Sleep apnea detection from single-lead electrocardiogram signals using effective deep-shallow fusion network. Physiol Meas 2024; 45:025002. [PMID: 38237197 DOI: 10.1088/1361-6579/ad205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Objective.Explore a network architecture that can efficiently perform single-lead electrocardiogram (ECG) sleep apnea (SA) detection by utilizing the beneficial information of extended ECG segments and reducing the impact of their noisy information.Approach.We propose an effective deep-shallow fusion network (EDSFnet). The deeper residual network is used to extract high-level features with stronger semantics and less noise from the original ECG segments. The shallower convolutional neural network is used to extract lower-level features with higher resolution containing more detailed neighborhood information from the extended ECG segments. These two types of features are then fused using Effective Channel Attention, implementing automatic weight assignment to take advantage of their complementary nature.Main results.The performance of EDSFnet is evaluated on the Apnea-ECG dataset and the FAH-ECG dataset. In the Apnea-ECG dataset with 35 subjects as the training set and 35 subjects as the test set, the accuracy of EDSFnet was 92.6% and 100% for per-segment and per-recording test, respectively. In the FAH-ECG dataset with 348 subjects as the training set and 88 subjects as the test set, the accuracy of EDSFnet was 89.0% and 93.2% for per-segment and per-recording test, respectively. EDSFnet has achieved state-of-the-art results in both experiments using the publicly available Apnea-ECG dataset and subject-independent experiments using the FAH-ECG clinical dataset.Significance.The success of EDSFnet in handling SA detection underlines its robustness and adaptability. By achieving superior results across different datasets, EDSFnet offers promise in advancing the cost-effective and efficient detection of SA through single-lead ECG, reducing the burden on patients and healthcare systems alike.
Collapse
Affiliation(s)
- Pan Li
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
| | - Wenjun Ma
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou, People's Republic of China
| | - Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaomao Fan
- Colledge of Big Data and Internet, Shenzhen Technology University, Shenzhen, People's Republic of China
| | - Ye Li
- Institue of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
Han Q, Qian X, Xu H, Wu K, Meng L, Qiu Z, Weng T, Zhou B, Gao X. DM-CNN: Dynamic Multi-scale Convolutional Neural Network with uncertainty quantification for medical image classification. Comput Biol Med 2024; 168:107758. [PMID: 38042102 DOI: 10.1016/j.compbiomed.2023.107758] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Convolutional neural network (CNN) has promoted the development of diagnosis technology of medical images. However, the performance of CNN is limited by insufficient feature information and inaccurate attention weight. Previous works have improved the accuracy and speed of CNN but ignored the uncertainty of the prediction, that is to say, uncertainty of CNN has not received enough attention. Therefore, it is still a great challenge for extracting effective features and uncertainty quantification of medical deep learning models In order to solve the above problems, this paper proposes a novel convolutional neural network model named DM-CNN, which mainly contains the four proposed sub-modules : dynamic multi-scale feature fusion module (DMFF), hierarchical dynamic uncertainty quantifies attention (HDUQ-Attention) and multi-scale fusion pooling method (MF Pooling) and multi-objective loss (MO loss). DMFF select different convolution kernels according to the feature maps at different levels, extract different-scale feature information, and make the feature information of each layer have stronger representation ability for information fusion HDUQ-Attention includes a tuning block that adjust the attention weight according to the different information of each layer, and a Monte-Carlo (MC) dropout structure for quantifying uncertainty MF Pooling is a pooling method designed for multi-scale models, which can speed up the calculation and prevent overfitting while retaining the main important information Because the number of parameters in the backbone part of DM-CNN is different from other modules, MO loss is proposed, which has a fast optimization speed and good classification effect DM-CNN conducts experiments on publicly available datasets in four areas of medicine (Dermatology, Histopathology, Respirology, Ophthalmology), achieving state-of-the-art classification performance on all datasets. DM-CNN can not only maintain excellent performance, but also solve the problem of quantification of uncertainty, which is a very important task for the medical field. The code is available: https://github.com/QIANXIN22/DM-CNN.
Collapse
Affiliation(s)
- Qi Han
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xin Qian
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Hongxiang Xu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Kepeng Wu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Lun Meng
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Zicheng Qiu
- School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Tengfei Weng
- School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Baoping Zhou
- School of Information Engineering, Tarim University, Alar City, 843300, PR China
| | - Xianqiang Gao
- School of Information Engineering, Tarim University, Alar City, 843300, PR China
| |
Collapse
|
7
|
Zou R, Yue H, Lei W, Fan X, Ma W, Li P, Li Y. A Dual-Scale Convolutional Neural Network for Sleep Apnea Detection with Time-Delayed SpO 2 Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082997 DOI: 10.1109/embc40787.2023.10340999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Sleep apnea (SA) is a common breathing disease, with clinical manifestations of sleep snoring at night with apnea and daytime sleepiness. It could lead to ischemic heart disease, stroke, or even sudden death. SpO2 signal is highly related to SA, and many automatic SA detection methods have been proposed. However, extant work focuses on small datasets with relatively few subjects (less than 100) and is unaware of SA syndromes occurring about 5 seconds prior to the SpO2 change. This study proposes an automatic SA detector called DSCNN using a single-lead SpO2 signal with a dual-scale convolutional neural network. To solve the time-delayed problem of SpO2 changes, we enlarge the target SpO2 segment information by combining its subsequent segment information. To utilize neighbouring segments information and further facilitate the SA detection performance, a dual-scale neural network with the fusing information of the prolonged target segment and its two surrounding segments is proposed. Three datasets from multiple centres are employed to verify the generic performance of DSCNN. Here, we must point out that we use two datasets as external datasets, and one of them is collected from the First Affiliated Hospital of Sun Yat-sen University with a large sample size (450 subjects). Extensive experiment results show that DSCNN can achieve promising results which are superior to the existing state-of-the-art methods.
Collapse
|