1
|
Xiong H, Yan Y, Chen Y, Liu J. Graph convolution network-based eeg signal analysis: a review. Med Biol Eng Comput 2025; 63:1609-1625. [PMID: 39883372 DOI: 10.1007/s11517-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN. An exhaustive classification of methods and a systematic analysis of key modules, such as brain map construction, node feature extraction, and GCN architecture design, are presented. In addition, we pay special attention to several key research issues related to GCN. This review enhances the understanding of the future potential of GCN in the field of EEG signal analysis. At the same time, several valuable development directions are sorted out for researchers in related fields, such as analysing the applicability of different GCN layers, building task-oriented GCN models, and improving adaptation to limited data.
Collapse
Affiliation(s)
- Hui Xiong
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China.
| | - Yan Yan
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China
- School of Artificial Intelligence, Tiangong University, Tianjin, 300387, China
| | - Yimei Chen
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jinzhen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Li X, Yang Z, Tu X, Wang J, Huang J. MFRC-Net: Multi-Scale Feature Residual Convolutional Neural Network for Motor Imagery Decoding. IEEE J Biomed Health Inform 2025; 29:224-234. [PMID: 39316474 DOI: 10.1109/jbhi.2024.3467090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Motor imagery (MI) decoding is the basis of external device control via electroencephalogram (EEG). However, the majority of studies prioritize enhancing the accuracy of decoding methods, often overlooking the magnitude and computational resource demands of deep learning models. In this study, we propose a novel lightweight Multi-Scale Feature Residual Convolutional Neural Network (MFRC-Net). MFRC-Net primarily consists of two blocks: temporal multi-scale residual convolution blocks and cross-domain dual-stream spatial convolution blocks. The former captures dynamic changes in EEG signals across various time scales through multi-scale grouped convolution and backbone temporal convolution skip connections; the latter improves local spatial feature extraction and calibrates feature mapping through the introduction of cross-domain spatial filtering layers. Furthermore, by specifically optimizing the loss function, MFRC-Net effectively reduces sensitivity to outliers. Experiment results on the BCI Competition IV 2a dataset and the SHU dataset demonstrate that, with a parameter size of only 13 K, MFRC-Net achieves accuracy of 85.1% and 69.3%, respectively, surpassing current state-of-the-art models. The integration of temporal multi-scale residual convolution blocks and cross-domain dual-stream spatial convolution blocks in lightweight models significantly boosts performance, as evidenced by ablation studies and visualizations.
Collapse
|
3
|
Zhang D, Li H, Xie J. Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification. Neural Netw 2024; 179:106497. [PMID: 38986186 DOI: 10.1016/j.neunet.2024.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The non-stationarity of EEG signals results in variability across sessions, impeding model building and data sharing. In this paper, we propose a domain adaptation method called GPL, which simultaneously considers global knowledge and prototype-based local class information to enhance the classification accuracy of motor imagery signals. Depending on the amount of labeled data available in the target domain, the method is implemented in both unsupervised and semi-supervised versions. Specifically, at the global level, we employ the maximum mean difference (MMD) loss to globally constrain the feature space, achieving comprehensive alignment. In the context of class-level operations, we propose two memory banks designed to accommodate class prototypes in each domain and constrain feature embeddings by applying two prototype-based contrastive losses. The source contrastive loss is used to organize source features spatially based on categories, thereby reconciling inter-class and intra-class relationships, while the interactive contrastive loss is employed to facilitate cross-domain information interaction. Simultaneously, in unsupervised scenarios, to mitigate the adverse effects of excessive pseudo-labels, we introduce an entropy-aware strategy that dynamically evaluates the confidence level of target data and personalized constraints on the participation of interactive contrastive loss. To validate our approach, extensive experiments were conducted on a highly regarded public EEG dataset, namely Dataset IIa of the BCI Competition IV, as well as a large-scale EEG dataset called GigaDB. The experiments yielded average classification accuracies of 86.03% and 84.22% respectively. These results demonstrate that our method is an effective EEG decoding model, conducive to advancing the development of motor imagery brain-computer interfaces. The architecture proposed in this study and the code for data partitioning can be found at https://github.com/zhangdx21/GPL.
Collapse
Affiliation(s)
- Dongxue Zhang
- Jilin University, College of Computer Science and Technology, Changchun, Jilin Province, China; Key Laboratory of Symbol Computation and Knowledge Engineering, Jilin University, Changchun 130012, China
| | - Huiying Li
- Jilin University, College of Computer Science and Technology, Changchun, Jilin Province, China; Key Laboratory of Symbol Computation and Knowledge Engineering, Jilin University, Changchun 130012, China.
| | - Jingmeng Xie
- Xi'an Jiaotong University, College of Electronic information, Xi'an, Shanxi Province, China
| |
Collapse
|
4
|
Shi Y, Tang S, Li Y, He Z, Tang S, Wang R, Zheng W, Chen Z, Zhou Y. Continual learning for seizure prediction via memory projection strategy. Comput Biol Med 2024; 181:109028. [PMID: 39173485 DOI: 10.1016/j.compbiomed.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Despite extensive algorithms for epilepsy prediction via machine learning, most models are tailored for offline scenarios and cannot handle actual scenarios where data changes over time. Catastrophic forgetting(CF) for learned electroencephalogram(EEG) data occurs when EEG changes dynamically in the clinical setting. This paper implements a continual learning(CL) strategy Memory Projection(MP) for epilepsy prediction, which can be combined with other algorithms to avoid CF. Such a strategy enables the model to learn EEG data from each patient in dynamic subspaces with weak correlation layer by layer to minimize interference and promote knowledge transfer. Regularization Loss Reconstruction Algorithm and Matrix Dimensionality Reduction Algorithm are introduced into the core of MP. Experimental results show that MP exhibits excellent performance and low forgetting rates in sequential learning of seizure prediction. The forgetting rate of accuracy and sensitivity under multiple experiments are below 5%. When learning from multi-center datasets, the forgetting rates for accuracy and sensitivity decrease to 0.65% and 1.86%, making it comparable to state-of-the-art CL strategies. Through ablation experiments, we have analyzed that MP can operate with minimal storage and computational cost, which demonstrates practical potential for seizure prediction in clinical scenarios.
Collapse
Affiliation(s)
- Yufei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shishi Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yuxuan Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhipeng He
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shengsheng Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Weishi Zheng
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyi Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Sung DJ, Kim KT, Jeong JH, Kim L, Lee SJ, Kim H, Kim SJ. Improving inter-session performance via relevant session-transfer for multi-session motor imagery classification. Heliyon 2024; 10:e37343. [PMID: 39296025 PMCID: PMC11409124 DOI: 10.1016/j.heliyon.2024.e37343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Motor imagery (MI)-based brain-computer interfaces (BCIs) using electroencephalography (EEG) have found practical applications in external device control. However, the non-stationary nature of EEG signals remains to obstruct BCI performance across multiple sessions, even for the same user. In this study, we aim to address the impact of non-stationarity, also known as inter-session variability, on multi-session MI classification performance by introducing a novel approach, the relevant session-transfer (RST) method. Leveraging the cosine similarity as a benchmark, the RST method transfers relevant EEG data from the previous session to the current one. The effectiveness of the proposed RST method was investigated through performance comparisons with the self-calibrating method, which uses only the data from the current session, and the whole-session transfer method, which utilizes data from all prior sessions. We validated the effectiveness of these methods using two datasets: a large MI public dataset (Shu Dataset) and our own dataset of gait-related MI, which includes both healthy participants and individuals with spinal cord injuries. Our experimental results revealed that the proposed RST method leads to a 2.29 % improvement (p < 0.001) in the Shu Dataset and up to a 6.37 % improvement in our dataset when compared to the self-calibrating method. Moreover, our method surpassed the performance of the recent highest-performing method that utilized the Shu Dataset, providing further support for the efficacy of the RST method in improving multi-session MI classification performance. Consequently, our findings confirm that the proposed RST method can improve classification performance across multiple sessions in practical MI-BCIs.
Collapse
Affiliation(s)
- Dong-Jin Sung
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Keun-Tae Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- College of Information Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji-Hyeok Jeong
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Laehyun Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung-Jong Kim
- Department of Biomedical Engineering, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Liu G, Tian L, Wen Y, Yu W, Zhou W. Cosine convolutional neural network and its application for seizure detection. Neural Netw 2024; 174:106267. [PMID: 38555723 DOI: 10.1016/j.neunet.2024.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Traditional convolutional neural networks (CNNs) often suffer from high memory consumption and redundancy in their kernel representations, leading to overfitting problems and limiting their application in real-time, low-power scenarios such as seizure detection systems. In this work, a novel cosine convolutional neural network (CosCNN), which replaces traditional kernels with the robust cosine kernel modulated by only two learnable factors, is presented, and its effectiveness is validated on the tasks of seizure detection. Meanwhile, based on the cosine lookup table and KL-divergence, an effective post-training quantization algorithm is proposed for CosCNN hardware implementation. With quantization, CosCNN can achieve a nearly 75% reduction in the memory cost with almost no accuracy loss. Moreover, we design a configurable cosine convolution accelerator on Field Programmable Gate Array (FPGA) and deploy the quantized CosCNN on Zedboard, proving the proposed seizure detection system can operate in real-time and low-power scenarios. Extensive experiments and comparisons were conducted using two publicly available epileptic EEG databases, the Bonn database and the CHB-MIT database. The results highlight the performance superiority of the CosCNN over traditional CNNs as well as other seizure detection methods.
Collapse
Affiliation(s)
- Guoyang Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, China
| | - Lan Tian
- School of Integrated Circuits, Shandong University, Jinan 250100, China
| | - Yiming Wen
- School of Integrated Circuits, Shandong University, Jinan 250100, China
| | - Weize Yu
- School of Integrated Circuits, Shandong University, Jinan 250100, China
| | - Weidong Zhou
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| |
Collapse
|
7
|
Ng HW, Guan C. Subject-independent meta-learning framework towards optimal training of EEG-based classifiers. Neural Netw 2024; 172:106108. [PMID: 38219680 DOI: 10.1016/j.neunet.2024.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Advances in deep learning have shown great promise towards the application of performing high-accuracy Electroencephalography (EEG) signal classification in a variety of tasks. However, many EEG-based datasets are often plagued by the issue of high inter-subject signal variability. Robust deep learning models are notoriously difficult to train under such scenarios, often leading to subpar or widely varying performance across subjects under the leave-one-subject-out paradigm. Recently, the model agnostic meta-learning framework was introduced as a way to increase the model's ability to generalize towards new tasks. While the original framework focused on task-based meta-learning, this research aims to show that the meta-learning methodology can be modified towards subject-based signal classification while maintaining the same task objectives and achieve state-of-the-art performance. Namely, we propose the novel implementation of a few/zero-shot subject-independent meta-learning framework towards multi-class inner speech and binary class motor imagery classification. Compared to current subject-adaptive methods which utilize large number of labels from the target, the proposed framework shows its effectiveness in training zero-calibration and few-shot models for subject-independent EEG classification. The proposed few/zero-shot subject-independent meta-learning mechanism performs well on both small and large datasets and achieves robust, generalized performance across subjects. The results obtained shows a significant improvement over the current state-of-the-art, with the binary class motor imagery achieving 88.70% and the accuracy of multi-class inner speech achieving an average of 31.15%. Codes will be made available to public upon publication.
Collapse
Affiliation(s)
- Han Wei Ng
- Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore; AI Singapore, 3 Research Link, 117602, Singapore.
| | - Cuntai Guan
- Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| |
Collapse
|