1
|
Boxerman JL, Quarles CC, Hu LS, Erickson BJ, Gerstner ER, Smits M, Kaufmann TJ, Barboriak DP, Huang RH, Wick W, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Chung C, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Rosen BR, Ellingson BM, Schmainda KM. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22:1262-1275. [PMID: 32516388 PMCID: PMC7523451 DOI: 10.1093/neuonc/noaa141] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the American Society of Neuroradiology (ASNR)
- Representative of the American Society of Functional Neuroradiology (ASFNR)
| | - Chad C Quarles
- Department of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the American Society of Neuroradiology (ASNR)
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Raymond H Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Heidelberg, Germany
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Paula Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - W K Al Yung
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute (NCI), Bethesda, Maryland, USA
- Representative of the Radiation Therapy Oncology Group (RTOG)
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
- Representative of the Ivy Consortium for Early Phase Clinical Trials
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
| |
Collapse
|
2
|
Chen Y, Tian T, Guo X, Zhang F, Fan M, Jin H, Liu D. Polymorphous low-grade neuroepithelial tumor of the young: case report and review focus on the radiological features and genetic alterations. BMC Neurol 2020; 20:123. [PMID: 32252664 PMCID: PMC7137220 DOI: 10.1186/s12883-020-01679-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A new type of epileptogenic tumor, the polymorphous low-grade neuroepithelial tumor of the young (PLNTY) was firstly reported by Jason T. Huse et al. at 2016. After that, only 1 case of PLNTY was reported by article. The radiological characteristics of PLNTY have not been concluded. The objective of our study was to report 3 cases of PLNTYs in details and to analyze the image characteristics and genetic alterations of PLNTYs by reviewing our cases and articles. CASE PRESENTATION There were 3 cases diagnosed as PLNTY by pathology in our hospital during the last 10 years, with the average age of 15. They were all suffered from different degrees of epilepsy. All of them underwent magnetic resonance (MR) imaging and 2 of them underwent computer tomography (CT) imaging. The PLNTYs are all appearing as a solid or solid-cystic cortical mass with little mass effect and unclear boundary with normal brain tissue. They are all shown as hyperintensity in T2WI and iso-/hypointensity in T1WI with slight or no enhancement after contract enhanced in MR imaging. The "salt and pepper sign" in T2WI and grit calcification in CT images might be specific characteristics of PLNTY. All of them recovered after excision of the tumors. The gene tests revealed fibroblast growth factor receptors 3 (FGFR3)-TACC3 fusion and FGFR3 amplification in one case, and the B-Raf proto-oncogene (BRAF) V600E mutation in another case. CONCLUSION In the image, the partial ill-marginated cortical mass with "salt and pepper sign" in T2WI or grit calcification in CT imaging might be the typical imaging characteristics of PLNTY. We also prove that the BRAF V600E mutation as well as the FGFR2 and FGFR3 have a close relationship with PLNTY.
Collapse
Affiliation(s)
- Yingqian Chen
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tian Tian
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Xinwen Guo
- Psychiatric Department, Guangdong 999 Brain Hospital, Guangzhou, Guangdong, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Miao Fan
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huawei Jin
- Department of Neurosurgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Dawei Liu
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Schmainda KM, Prah MA, Rand SD, Liu Y, Logan B, Muzi M, Rane SD, Da X, Yen YF, Kalpathy-Cramer J, Chenevert TL, Hoff B, Ross B, Cao Y, Aryal MP, Erickson B, Korfiatis P, Dondlinger T, Bell L, Hu L, Kinahan PE, Quarles CC. Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR Am J Neuroradiol 2018; 39:1008-1016. [PMID: 29794239 DOI: 10.3174/ajnr.a5675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Standard assessment criteria for brain tumors that only include anatomic imaging continue to be insufficient. While numerous studies have demonstrated the value of DSC-MR imaging perfusion metrics for this purpose, they have not been incorporated due to a lack of confidence in the consistency of DSC-MR imaging metrics across sites and platforms. This study addresses this limitation with a comparison of multisite/multiplatform analyses of shared DSC-MR imaging datasets of patients with brain tumors. MATERIALS AND METHODS DSC-MR imaging data were collected after a preload and during a bolus injection of gadolinium contrast agent using a gradient recalled-echo-EPI sequence (TE/TR = 30/1200 ms; flip angle = 72°). Forty-nine low-grade (n = 13) and high-grade (n = 36) glioma datasets were uploaded to The Cancer Imaging Archive. Datasets included a predetermined arterial input function, enhancing tumor ROIs, and ROIs necessary to create normalized relative CBV and CBF maps. Seven sites computed 20 different perfusion metrics. Pair-wise agreement among sites was assessed with the Lin concordance correlation coefficient. Distinction of low- from high-grade tumors was evaluated with the Wilcoxon rank sum test followed by receiver operating characteristic analysis to identify the optimal thresholds based on sensitivity and specificity. RESULTS For normalized relative CBV and normalized CBF, 93% and 94% of entries showed good or excellent cross-site agreement (0.8 ≤ Lin concordance correlation coefficient ≤ 1.0). All metrics could distinguish low- from high-grade tumors. Optimum thresholds were determined for pooled data (normalized relative CBV = 1.4, sensitivity/specificity = 90%:77%; normalized CBF = 1.58, sensitivity/specificity = 86%:77%). CONCLUSIONS By means of DSC-MR imaging data obtained after a preload of contrast agent, substantial consistency resulted across sites for brain tumor perfusion metrics with a common threshold discoverable for distinguishing low- from high-grade tumors.
Collapse
Affiliation(s)
- K M Schmainda
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - M A Prah
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - S D Rand
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.).,Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - Y Liu
- Division of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B Logan
- Division of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M Muzi
- Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - S D Rane
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - X Da
- Department of Radiology (X.D.), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Y-F Yen
- Athinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
| | - J Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
| | | | - B Hoff
- Department of Radiology (T.L.C., B.H., B.R.)
| | - B Ross
- Department of Radiology (T.L.C., B.H., B.R.)
| | - Y Cao
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
| | - M P Aryal
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
| | - B Erickson
- Department of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
| | - P Korfiatis
- Department of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
| | - T Dondlinger
- Imaging Biometrics LLC (T.D.), Elm Grove, Wisconsin
| | - L Bell
- Division of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - L Hu
- Department of Radiology (L.H.), Mayo Clinic, Scottsdale, Arizona
| | - P E Kinahan
- Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - C C Quarles
- Division of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
4
|
Eilaghi A, Yeung T, d'Esterre C, Bauman G, Yartsev S, Easaw J, Fainardi E, Lee TY, Frayne R. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images. BIOMARKERS IN CANCER 2016; 8:47-59. [PMID: 27398030 PMCID: PMC4933536 DOI: 10.4137/bic.s31801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022]
Abstract
Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.
Collapse
Affiliation(s)
- Armin Eilaghi
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Timothy Yeung
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Christopher d'Esterre
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Glenn Bauman
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Slav Yartsev
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Jay Easaw
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, Ferrara, Italy.; Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Ting-Yim Lee
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Richard Frayne
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
5
|
Xu J, Chen A, Xiao J, Jiang Z, Tian Y, Tang Q, Cao P, Dai Y, Krainik A, Shen J. Evaluation of tumour vascular distribution and function using immunohistochemistry and BOLD fMRI with carbogen inhalation. Clin Radiol 2016; 71:1255-1262. [PMID: 27170218 DOI: 10.1016/j.crad.2016.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
AIM To evaluate oxygenation changes in rat subcutaneous C6 gliomas using blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) combined with non-haemodynamic response function (non-HRF) analysis. MATERIALS AND METHODS BOLD fMRI were performed during carbogen inhalation in 20 Wistar rats bearing gliomas. Statistical maps of spatial oxygenation changes were computed by a dedicated non-HRF analysis algorithm. Three types of regions of interest (ROIs) were defined: (1) maximum re-oxygenation zone (ROImax), (2) re-oxygenation zones that were less than the maximum re-oxygenation (ROInon-max), and (3) zones without significant re-oxygenation (ROInone). The values of percent BOLD signal change (PSC), percent enhancement (ΔSI), and significant re-oxygenation (T) were extracted from each ROI. Tumours were sectioned for histology using the fMRI scan orientation and were stained with haematoxylin and eosin and CD105. The number of microvessels (MVN) in each ROI was counted. Differences and correlations among the values for T, PSC, ΔSI, and MVN were determined. RESULTS After carbogen inhalation, the PSC significantly increased in the ROImax areas (p<0.01) located in the tumour parenchyma. No changes occurred in any of the ROInone areas (20/20). Some changes occurred in a minority of the ROInon-max areas (3/60) corresponding to tumour necrosis. MVN and PSC (R=0.59, p=0.01) were significantly correlated in the ROImax areas. In the ROInon-max areas, MVN was significantly correlated with PSC (R=0.55, p=0.00) and ΔSI (R=0.37, p=0.00). CONCLUSIONS Statistical maps obtained via BOLD fMRI with non-HRF analysis can assess the re-oxygenation of gliomas.
Collapse
Affiliation(s)
- J Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - A Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - J Xiao
- Department of Radiology, The Central Hospital of Wuhan, Wuhan, China
| | - Z Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| | - Y Tian
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China; Suzhou Key Laboratory for Radiation Oncology, Suzhou, China
| | - Q Tang
- Department of Radiology, Wuxi People's Hospital, Wuxi, China
| | - P Cao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Y Dai
- Magnetic Resonance Imaging Institute for Biomedical Research, Wayne State University, Detroit, MI, USA
| | - A Krainik
- Department of Neuroradiology and MRI, CHU Grenoble-IFR1, Grenoble, France
| | - J Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Copen WA, Lev MH, Rapalino O. Brain perfusion: computed tomography and magnetic resonance techniques. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:117-135. [PMID: 27432662 DOI: 10.1016/b978-0-444-53485-9.00006-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral perfusion imaging provides assessment of regional microvascular hemodynamics in the living brain, enabling in vivo measurement of a variety of different hemodynamic parameters. Perfusion imaging techniques that are used in the clinical setting usually rely upon X-ray computed tomography (CT) or magnetic resonance imaging (MRI). This chapter reviews CT- and MRI-based perfusion imaging techniques, with attention to image acquisition, clinically relevant aspects of image postprocessing, and fundamental differences between CT- and MRI-based techniques. Correlations with cerebrovascular physiology and potential clinical applications of perfusion imaging are reviewed, focusing upon the two major classes of neurologic disease in which perfusion imaging is most often performed: primary perfusion disorders (including ischemic stroke, transient ischemic attack, and reperfusion syndrome), and brain tumors.
Collapse
Affiliation(s)
- William A Copen
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Michael H Lev
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Otto Rapalino
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Vilgrain I, Sidibé A, Polena H, Cand F, Mannic T, Arboleas M, Boccard S, Baudet A, Gulino-Debrac D, Bouillet L, Quesada JL, Mendoza C, Lebas JF, Pelletier L, Berger F. Evidence for post-translational processing of vascular endothelial (VE)-cadherin in brain tumors: towards a candidate biomarker. PLoS One 2013; 8:e80056. [PMID: 24358106 PMCID: PMC3864785 DOI: 10.1371/journal.pone.0080056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y(685), a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p ≤ 0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology.
Collapse
Affiliation(s)
- Isabelle Vilgrain
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Adama Sidibé
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Helena Polena
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Francine Cand
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Tiphaine Mannic
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Mélanie Arboleas
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Sandra Boccard
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Antoine Baudet
- Grenoble University Hospital, Division of Internal Medicine, Grenoble, France
| | - Danielle Gulino-Debrac
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Laurence Bouillet
- INSERM, Unit 1036, Biology of Cancer and Infection, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
- Grenoble University Hospital, Division of Internal Medicine, Grenoble, France
| | - Jean-Louis Quesada
- INSERM 003, Clinical Investigation Center, Grenoble University Hospital, Grenoble, France
| | - Christophe Mendoza
- INSERM 003, Clinical Investigation Center, Grenoble University Hospital, Grenoble, France
| | | | - Laurent Pelletier
- INSERM, Unit 836 Brain Nanomedicine, Grenoble Neurosciences Institut Grenoble, Grenoble, France
- Joseph Fourier University, Medicine School, Saint-Martin-d'Hères, France
- Grenoble University Hospital, Biology and Pathology Institute, Grenoble, France
| | - François Berger
- INSERM, Unit 836 Brain Nanomedicine, Grenoble Neurosciences Institut Grenoble, Grenoble, France
- Joseph Fourier University, Medicine School, Saint-Martin-d'Hères, France
- Grenoble University Hospital, Division of Oncology, Grenoble, France
| |
Collapse
|
8
|
Grand S, Tahon F, Attye A, Lefournier V, Le Bas JF, Krainik A. Perfusion imaging in brain disease. Diagn Interv Imaging 2013; 94:1241-57. [PMID: 23876408 DOI: 10.1016/j.diii.2013.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Perfusion CT or MRI have been extensively developed over the last years and are accessible on most imaging machines. Perfusion CT has taken a major place in the assessment of a stroke. Its role has to be specified for the diagnosis and treatment of the vasospasm, complicating a subarachnoid hemorrhage. Perfusion MRI should be included in the assessment of any brain tumor, both at the time of the diagnosis as well as in the post-treatment monitoring. It is included in the multimodal approach required for the optimum treatment of this disease. The applications in epilepsy and the neurodegenerative diseases are in the evaluation process.
Collapse
Affiliation(s)
- S Grand
- CHU de Grenoble, Cluni BP 217, 38043 Grenoble cedex 9, France; Grenoble institut des neurosciences, chemin Fortuné-Ferrini, 38042 Grenoble cedex 9, France.
| | | | | | | | | | | |
Collapse
|
9
|
Mauz N, Krainik A, Tropres I, Lamalle L, Sellier E, Eker O, Tahon F, Le Bas JF, Grand S. Perfusion magnetic resonance imaging: Comparison of semiologic characteristics in first-pass perfusion of brain tumors at 1.5 and 3 Tesla. J Neuroradiol 2012; 39:308-16. [DOI: 10.1016/j.neurad.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/05/2011] [Accepted: 12/30/2011] [Indexed: 10/28/2022]
|