1
|
Tong J, Su T, Chen Y, Zhang X, Yao M, Wang Y, Liu H, Xu M, Wang J, Jin Z. Application of deep learning reconstruction combined with time-resolved post-processing method to improve image quality in CTA derived from low-dose cerebral CT perfusion data. BMC Med Imaging 2025; 25:139. [PMID: 40301751 PMCID: PMC12042446 DOI: 10.1186/s12880-025-01623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/03/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND To assess the effect of the combination of deep learning reconstruction (DLR) and time-resolved maximum intensity projection (tMIP) or time-resolved average (tAve) post-processing method on image quality of CTA derived from low-dose cerebral CTP. METHODS Thirty patients underwent regular dose CTP (Group A) and other thirty with low-dose (Group B) were retrospectively enrolled. Group A were reconstructed with hybrid iterative reconstruction (R-HIR). In Group B, four image datasets of CTA were gained: L-HIR, L-DLR, L-DLRtMIP and L-DLRtAve. The CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective images quality were calculated and compared. The Intraclass Correlation (ICC) between CTA and MRA of two subgroups were calculated. RESULTS The low-dose group achieved reduction of radiation dose by 33% in single peak arterial phase and 18% in total compared to the regular dose group (single phase: 0.12 mSv vs 0.18 mSv; total: 1.91mSv vs 2.33mSv). The L-DLRtMIP demonstrated higher CT values in vessels compared to R-HIR (all P < 0.05). The CNR of vessels in L-HIR were statistically inferior to R-HIR (all P < 0.001). There was no significant different in image noise and CNR of vessels between L-DLR and R-HIR (all P > 0.05, except P = 0.05 for CNR of ICAs, 77.19 ± 21.64 vs 73.54 ± 37.03). However, the L-DLRtMIP and L-DLRtAve presented lower image noise, higher CNR (all P < 0.05) and subjective scores (all P < 0.001) in vessels than R-HIR. The diagnostic accuracy in Group B was excellent (ICC = 0.944). CONCLUSION Combining DLR with tMIP or tAve allows for reduction in radiation dose by about 33% in single peak arterial phase and 18% in total in CTP scanning, while further improving image quality of CTA derived from CTP data when compared to HIR.
Collapse
Affiliation(s)
- Jiajing Tong
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Xiaobo Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yanling Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haozhe Liu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Min Xu
- Canon Medical Systems (China), Building 205, Yard No. A 10, JiuXianQiao North Road, Chaoyang District, Beijing, 100015, China
| | - Jian Wang
- Canon Medical Systems (China), Building 205, Yard No. A 10, JiuXianQiao North Road, Chaoyang District, Beijing, 100015, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
2
|
Liu CK, Huang HM. A Novel Self-Supervised Learning-Based Method for Dynamic CT Brain Perfusion Imaging. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01341-1. [PMID: 39633209 DOI: 10.1007/s10278-024-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Dynamic computed tomography (CT)-based brain perfusion imaging is a non-invasive technique that can provide quantitative measurements of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). However, due to high radiation dose, dynamic CT scan with a low tube voltage and current protocol is commonly used. Because of this reason, the increased noise degrades the quality and reliability of perfusion maps. In this study, we aim to propose and investigate the feasibility of utilizing a convolutional neural network and a bi-directional long short-term memory model with an attention mechanism to self-supervisedly yield the impulse residue function (IRF) from dynamic CT images. Then, the predicted IRF can be used to compute the perfusion parameters. We evaluated the performance of the proposed method using both simulated and real brain perfusion data and compared the results with those obtained from two existing methods: singular value decomposition and tensor total-variation. The simulation results showed that the overall performance of parameter estimation obtained from the proposed method was superior to that obtained from the other two methods. The experimental results showed that the perfusion maps calculated from the three studied methods were visually similar, but small and significant differences in perfusion parameters between the proposed method and the other two methods were found. We also observed that there were several low-CBF and low-CBV lesions (i.e., suspected infarct core) found by all comparing methods, but only the proposed method revealed longer MTT. The proposed method has the potential to self-supervisedly yield reliable perfusion maps from dynamic CT images.
Collapse
Affiliation(s)
- Chi-Kuang Liu
- Department of Medical Imaging, Changhua Christian Hospital, 135 Nanxiao St., Changhua County 500, Taiwan
| | - Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, Zhongzheng Dist, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100, Taiwan.
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, Zhongzheng Dist., National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, 100, Taiwan.
| |
Collapse
|
3
|
Stein T, Kellner E, Mueller-Peltzer K, Elsheikh S, Reisert M, Hosp JA, Bamberg F, Urbach H, Rau A. Assessing bolus peak position in CT perfusion: High variance persisting despite age-dependency in a large cohort. Eur J Radiol 2024; 177:111595. [PMID: 38970994 DOI: 10.1016/j.ejrad.2024.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE CT perfusion (CTP) is a valuable tool in suspected acute ischemic stroke. A substantial variability of the delay between contrast injection and bolus arrival in the brain is conceivable. We investigated the distribution of the peak positions of the concentration time curves measured in an artery (arterial input function, AIF) and - in cases with ischemia - also measured in the penumbra. METHODS We report on 2624 perfusion scans (52 % female, mean age 72.2 ± 14.4 years) with stroke present in 1636 cases. From the attenuation time curves of the AIF and the penumbra, we calculated the respective bolus peak positions and investigated the distribution of the peak positions. Further, we analyzed the bolus peak positions for associations with age. RESULTS The bolus peaked significantly later in older patients, both in the AIF and in the penumbra (all p < 0.001). In the whole cohort, we found a significant association of age with the bolus peak position of the AIF (ρ = 0.334; p < 0.001). In patients with stroke, age was also associated to the peak position of the AIF (ρ = 0.305; p < 0.001), and the penumbra (ρ = 0.246, p < 0.001). However, a substantial range of peak positions of the AIF and penumbra was noted across all age ranges. CONCLUSIONS This study revealed a strong age-dependency of the contrast bolus arrival in both healthy and ischemic tissue. This variability makes non-uniform sampling schemes, which have been suggested to reduce radiation dose, problematic, as they might not always optimally capture the bolus in all cases.
Collapse
Affiliation(s)
- Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Mueller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Samer Elsheikh
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Rau A, Reisert M, Stein T, Mueller-Peltzer K, Rau S, Bamberg F, Taschner CA, Urbach H, Kellner E. Impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion in patients with suspected stroke. Neuroradiology 2024; 66:749-759. [PMID: 38498208 PMCID: PMC11031466 DOI: 10.1007/s00234-024-03335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marco Reisert
- Department of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Mueller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rau
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian A Taschner
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Deak Z, Schuettoff L, Lohse AK, Fabritius M, Reidler P, Forbrig R, Kunz W, Dimitriadis K, Ricke J, Sabel B. Reduction in Radiation Exposure of CT Perfusion by Optimized Imaging Timing Using Temporal Information of the Preceding CT Angiography of the Carotid Artery in the Stroke Protocol. Diagnostics (Basel) 2022; 12:diagnostics12112853. [PMID: 36428913 PMCID: PMC9689781 DOI: 10.3390/diagnostics12112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: CT perfusion (CTP) is a fast, robust and widely available but dose-exposing imaging technique for infarct core and penumbra detection. Carotid CT angiography (CTA) can precede CTP in the stroke protocol. Temporal information of the bolus tracking series of CTA could allow for better timing and a decreased number of scans in CTP, resulting in less radiation exposure, if the shortening of CTP does not alter the calculated infarct core and penumbra or the resulting perfusion maps, which are essential for further treatment decisions. (2) Methods: 66 consecutive patients with ischemic stroke proven by follow-up imaging or endovascular intervention were included in this retrospective study approved by the local ethics committee. In each case, six simulated, stepwise shortened CTP examinations were compared with the original data regarding the perfusion maps, infarct core, penumbra and endovascular treatment decision. (3) Results: In simulated CTPs with 26, 28 and 30 scans, the infarct core, penumbra and PRR values were equivalent, and the resulting clinical decision was identical to the original CTP. (4) Conclusions: The temporal information of the bolus tracking series of the carotid CTA can allow for better timing and a lower radiation exposure by eliminating unnecessary scans in CTP.
Collapse
Affiliation(s)
- Zsuzsanna Deak
- Imaging Urania, Laurenzerberg 2, 1010 Vienna, Austria
- Correspondence:
| | - Lara Schuettoff
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Ann-Kathrin Lohse
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Fabritius
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Paul Reidler
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Robert Forbrig
- Department of Neuroradiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Wolfgang Kunz
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Konstantin Dimitriadis
- Department of Neurology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | - Bastian Sabel
- Department of Radiology, University Hospital of Munich (LMU), Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
6
|
Temporal averaging angiographic reconstructions from whole-brain CT perfusion for the detection of vasospasm. J Neuroradiol 2022; 50:333-340. [PMID: 36216294 DOI: 10.1016/j.neurad.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study is to evaluate the image quality and diagnostic performance of angiographic images reconstructed from whole-brain CT perfusion (CTP) using temporal averaging compared to CT angiography (CTA) for the detection of vasospasm. MATERIALS AND METHODS 39 CT studies in 28 consecutive patients who underwent brain CTA with CTP for suspected vasospasm between September 2020 and May 2021 were retrospectively evaluated. The image quality of these two vascular imaging techniques was assessed either quantitatively (image noise, vascular enhancement, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios,) and qualitatively (4 criteria assessed on a 5-point scale). Intra and interobserver agreements and a diagnostic confidence score on the diagnosis of vasospasm were measured. Radiation dose parameters (volume CT dose index (CTDIvol) and dose-length product (DLP)) were recorded. RESULTS Both SNR and CNR were significantly higher with temporal averaging compared to CTA, increasing by 104% and 113%, respectively (p<0.001). The qualitative assessment found no significant difference in overall image quality between temporal averaging (4.33 ± 0.48) and brain CTA (4.19 ± 0.52) (p = 0.12).There was a significant improvement in intravascular noise and arterial contrast enhancement with temporal averaging. The evaluation of intra and interobserver agreements showed a robust concordance in the diagnosis of vasospasm between the two techniques. CONCLUSIONS Temporal averaging appeared as a feasible and reliable imaging technique for the detection of vasospasm. The use of temporal averaging, replacing brain CTA, could represent a new strategy of radiation and contrast material doses reduction in these patients.
Collapse
|
7
|
Mo X, Cui Y, Yuan J, Hang Z, Jiang X, Duan G, Liang L, Huang Z, Li S, Sun P, Chen W, Wei L, Guo Y, Deng D. Study on a new "One-stop-shop" scan protocol combining brain CT perfusion and head-and-neck CT angiography by using 256-detector CT for stroke patients. Eur J Radiol 2022; 154:110426. [PMID: 35797790 DOI: 10.1016/j.ejrad.2022.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE We sought to evaluate the performance of a new "one-stop-shop" scan protocol combining brain computed tomography perfusion (CTP) and head-and-neck CT angiography (CTA) imaging for acute stroke patients using a 256-detector CT scanner. METHOD From March to August 2020, 60 patients (30 men and 30 women) aged 22-88 years with suspected acute stroke were enrolled and randomly divided into 2 groups to undergo brain CTP and head-and-neck CTA with a 256-detector CT system. Group A used traditional scan protocol with a separate brain CTP and head-and-neck CT examination that included non-contrast-enhanced and contrast-enhanced acquisitions; group B used the new "one-stop-shop" scan protocol with head-and-neck CTA data inserted into brain CTP scans at the peak time (PT) of the arterial phase. The insertion point of the head-and-neck CTA data was determined by a test bolus. The examination time, contrast dose, radiation dose, and image quality were compared between the groups. RESULTS The total contrast dose was reduced by 40% in group B compared to group A (60 mL vs. 100 mL). The imaging time was 52.5 ± 2.6 s in group B and 74.9 ± 3.3 s in group A, showing a reduction of approximately 43% in group B. There was no significant difference in image quality both quantitatively and qualitatively between the groups (all P > 0.05). Group B had a slight reduction in dose length product (1139.0 ± 45.3 vs. 1211.6 ± 31.9 mGy·cm, P < 0.001). CONCLUSIONS The proposed "one-stop-shop" scan protocol combining brain CTP and head-and-neck CTA on a 256-detector CT system can reduce imaging time and contrast dose, without affecting image quality or perfusion results, compared to the traditional protocol of separating the examinations.
Collapse
Affiliation(s)
- Xiaping Mo
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Yu Cui
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Jie Yuan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Zufei Hang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Xueyuan Jiang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Gaoxiong Duan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Zengchao Huang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Shasha Li
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Peiyi Sun
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Wei Chen
- Department of Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Lanzhen Wei
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Ying Guo
- GE Healthcare, Computed Tomography Research Center, Beijing 100176, China
| | - Demao Deng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China.
| |
Collapse
|
8
|
Evaluation of radiation exposure for patients undergoing computed tomography perfusion procedure for acute ischemic stroke. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Automated Processing of Head CT Perfusion Imaging for Ischemic Stroke Triage: A Practical Guide to Quality Assurance and Interpretation. AJR Am J Roentgenol 2021; 217:1401-1416. [PMID: 34259036 DOI: 10.2214/ajr.21.26139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent successful trials of thrombectomy launched a shift to imaging-based patient selection for stroke intervention. Many centers have adopted CT perfusion imaging (CTP) as a routine part of stroke workflow, and the demand for emergent CTP interpretation is growing. Fully automated CTP postprocessing software that rapidly generates standardized color-coded CTP summary maps with minimal user input and with easy accessibility of the software output is increasingly being adopted. Such automated postprocessing greatly streamlines clinical workflow and CTP interpretation for radiologists and other frontline physicians. However, the straightforward interface overshadows the computational complexity of the underlying postprocessing workflow, which, if not carefully examined, predisposes the interpreting physician to diagnostic errors. Using case examples, this article aims to familiarize the general radiologist with interpreting automated CTP software data output in the context of contemporary stroke management, providing a discussion of CTP acquisition and postprocessing, a stepwise guide for CTP quality assurance and troubleshooting, and a framework for avoiding clinically significant CTP interpretative pitfalls in commonly encountered clinical scenarios. Interpreting radiologists should apply the outlined approach for quality assurance and develop a comprehensive search pattern for the identified pitfalls, to ensure accurate CTP interpretation and optimize patient selection for reperfusion.
Collapse
|
10
|
Divel SE, Christensen S, Segars WP, Lansberg MG, Pelc NJ. A dynamic simulation framework for CT perfusion in stroke assessment built from first principles. Med Phys 2021; 48:3500-3510. [PMID: 33877693 DOI: 10.1002/mp.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/24/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Physicians utilize cerebral perfusion maps (e.g., cerebral blood flow, cerebral blood volume, transit time) to prescribe the plan of care for stroke patients. Variability in scanning techniques and post-processing software can result in differences between these perfusion maps. To determine which techniques are acceptable for clinical care, it is important to validate the accuracy and reproducibility of the perfusion maps. Validation using clinical data is challenging due to the lack of a gold standard to assess cerebral perfusion and the impracticality of scanning patients multiple times with different scanning techniques. In contrast, simulated data from a realistic digital phantom of the cerebral perfusion in acute stroke patients would enable studies to optimize and validate the scanning and post-processing techniques. METHODS We describe a complete framework to simulate CT perfusion studies for stroke assessment. We begin by expanding the XCAT brain phantom to enable spatially varying contrast agent dynamics and incorporate a realistic model of the dynamics in the cerebral vasculature derived from first principles. A dynamic CT simulator utilizes the time-concentration curves to define the contrast agent concentration in the object at each time point and generates CT perfusion images compatible with commercially available post-processing software. We also generate ground truth perfusion maps to which the maps generated by post-processing software can be compared. RESULTS We demonstrate a dynamic CT perfusion study of a simulated patient with an ischemic stroke and the resulting perfusion maps generated by post-processing software. We include a visual comparison between the computer-generated perfusion maps and the ground truth perfusion maps. The framework is highly tunable; users can modify the perfusion properties (e.g., occlusion location, CBF, CBV, and MTT), scanner specifications (e.g., focal spot size and detector configuration), scanning protocol (e.g., kVp and mAs), and reconstruction parameters (e.g., slice thickness and reconstruction filter). CONCLUSIONS This framework provides realistic test data with the underlying ground truth that enables a robust assessment of CT perfusion techniques and post-processing methods for stroke assessment.
Collapse
Affiliation(s)
- Sarah E Divel
- Departments of Electrical Engineering and Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Soren Christensen
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William P Segars
- Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology and Biomedical Engineering, Medical Physics Graduate Program, Duke University, Durham, NC, 27705, USA
| | - Maarten G Lansberg
- Department of Neurology and Neurological Sciences and the Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Norbert J Pelc
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhao C, Martin T, Shao X, Alger JR, Duddalwar V, Wang DJJ. Low Dose CT Perfusion With K-Space Weighted Image Average (KWIA). IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3879-3890. [PMID: 32746131 PMCID: PMC7704693 DOI: 10.1109/tmi.2020.3006461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CTP (Computed Tomography Perfusion) is widely used in clinical practice for the evaluation of cerebrovascular disorders. However, CTP involves high radiation dose (≥~200mGy) as the X-ray source remains continuously on during the passage of contrast media. The purpose of this study is to present a low dose CTP technique termed K-space Weighted Image Average (KWIA) using a novel projection view-shared averaging algorithm with reduced tube current. KWIA takes advantage of k-space signal property that the image contrast is primarily determined by the k-space center with low spatial frequencies and oversampled projections. KWIA divides each 2D Fourier transform (FT) or k-space CTP data into multiple rings. The outer rings are averaged with neighboring time frames to achieve adequate signal-to-noise ratio (SNR), while the center region of k-space remains unchanged to preserve high temporal resolution. Reduced dose sinogram data were simulated by adding Poisson distributed noise with zero mean on digital phantom and clinical CTP scans. A physical CTP phantom study was also performed with different X-ray tube currents. The sinogram data with simulated and real low doses were then reconstructed with KWIA, and compared with those reconstructed by standard filtered back projection (FBP) and simultaneous algebraic reconstruction with regularization of total variation (SART-TV). Evaluation of image quality and perfusion metrics using parameters including SNR, CNR (contrast-to-noise ratio), AUC (area-under-the-curve), and CBF (cerebral blood flow) demonstrated that KWIA is able to preserve the image quality, spatial and temporal resolution, as well as the accuracy of perfusion quantification of CTP scans with considerable (50-75%) dose-savings.
Collapse
|
13
|
Zhang Y, Peng J, Zeng D, Xie Q, Li S, Bian Z, Wang Y, Zhang Y, Zhao Q, Zhang H, Liang Z, Lu H, Meng D, Ma J. Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction with Low-Dose Scans. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:1375-1388. [PMID: 33313342 PMCID: PMC7731921 DOI: 10.1109/tci.2020.3023598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perfusion computed tomography (PCT) is critical in detecting cerebral ischemic lesions. PCT examination with low-dose scans can effectively reduce radiation exposure to patients at the cost of degraded images with severe noise and artifacts. Tensor total variation (TTV) models are powerful tools that can encode the regional continuous structures underlying a PCT object. In a TTV model, the sparsity structures of the contrast-medium concentration (CMC) across PCT frames are assumed to be isotropic with identical and independent distribution. However, this assumption is inconsistent with practical PCT tasks wherein the sparsity has evident variations and correlations. Such modeling deviation hampers the performance of TTV-based PCT reconstructions. To address this issue, we developed a novel contrast-medium anisotropy-aware tensor total variation (CMAA-TTV) model to describe the intrinsic anisotropy sparsity of the CMC in PCT imaging tasks. Instead of directly on the difference matrices, the CMAA-TTV model characterizes sparsity on a low-rank subspace of the difference matrices which are calculated from the input data adaptively, thus naturally encoding the intrinsic variant and correlated anisotropy sparsity structures of the CMC. We further proposed a robust and efficient PCT reconstruction algorithm to improve low-dose PCT reconstruction performance using the CMAA-TTV model. Experimental studies using a digital brain perfusion phantom, patient data with low-dose simulation and clinical patient data were performed to validate the effectiveness of the presented algorithm. The results demonstrate that the CMAA-TTV algorithm can achieve noticeable improvements over state-of-the-art methods in low-dose PCT reconstruction tasks.
Collapse
Affiliation(s)
- Yuanke Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China, and also with the School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China
| | - Jiangjun Peng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qi Xie
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yong Zhang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Zhang
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Zhengrong Liang
- Departments of Radiology and Biomedical Engineering, State University of New York at Stony Brook, NY 11794, USA
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Deyu Meng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
A Novel Singular Value Decomposition-Based Denoising Method in 4-Dimensional Computed Tomography of the Brain in Stroke Patients with Statistical Evaluation. SENSORS 2020; 20:s20113063. [PMID: 32481740 PMCID: PMC7309118 DOI: 10.3390/s20113063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Computed tomography (CT) is a widely used medical imaging modality for diagnosing various diseases. Among CT techniques, 4-dimensional CT perfusion (4D-CTP) of the brain is established in most centers for diagnosing strokes and is considered the gold standard for hyperacute stroke diagnosis. However, because the detrimental effects of high radiation doses from 4D-CTP may cause serious health risks in stroke survivors, our research team aimed to introduce a novel image-processing technique. Our singular value decomposition (SVD)-based image-processing technique can improve image quality, first, by separating several image components using SVD and, second, by reconstructing signal component images to remove noise, thereby improving image quality. For the demonstration in this study, 20 4D-CTP dynamic images of suspected acute stroke patients were collected. Both the images that were and were not processed via the proposed method were compared. Each acquired image was objectively evaluated using contrast-to-noise and signal-to-noise ratios. The scores of the parameters assessed for the qualitative evaluation of image quality improved to an excellent rating (p < 0.05). Therefore, our SVD-based image-denoising technique improved the diagnostic value of images by improving their quality. The denoising technique and statistical evaluation can be utilized in various clinical applications to provide advanced medical services.
Collapse
|
15
|
Lopez-Rendon X, Stratis A, Zhang G, Coudyzer W, Develter W, Bogaerts R, Bosmans H, Zanca F. Peak skin and eye lens radiation dose from brain perfusion CT: CTDI vol and Monte Carlo based estimations. Eur J Radiol 2020; 126:108950. [PMID: 32199141 DOI: 10.1016/j.ejrad.2020.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the eye lens, peak skin and brain doses associated with head CT perfusion exam by means of thermoluminescent dosimeters (TLDs) measurements in a cadaver and compare them to Monte Carlo (MC) dose estimations as well as to the CTDIvol. METHOD 18 TLDs were inserted in the brain, skin, and eye lenses of a female cadaver head, who underwent a CT brain perfusion scan using a Siemens Definition Flash. The table-toggling protocol used 80 kVp, 200 mAs, 32 × 1.2 mm collimation and 30 sequences. From the CT images, a voxel model was created. Doses were calculated with a MC framework (EGSnrc) and compared to TLD measurements. TLD measurements were also compared to the displayed CTDIvol. RESULTS The average measured doses were: 185 mGy for the eyes lenses, 107 mGy for the skin, 172 mGy for the brain and 273 mGy for the peak skin. The reported CTDIvol of 259 mGy overestimated the averaged organ doses but not the peak skin dose. MC estimated organ doses were 147 mGy for the eyes (average), 104 mGy for the skin and 178 mGy for the brain (-20 %, -3% and 4% difference respect to the TLDs measurements, respectively). CONCLUSIONS CTDIvol remains a conservative metric for average brain, skin and eyes lenses doses. For accurate eye lens and skin dose estimates MC simulations can be used. CTDIvol should be used with caution as it was of the same order of magnitude as the peak skin dose for this protocol and this particular CT scanner.
Collapse
Affiliation(s)
- X Lopez-Rendon
- Department of Imaging and Pathology, Division of Medical Physics & Quality Assessment, KU Leuven, Herestraat 49 box 7003, 3000, Leuven, Belgium.
| | - A Stratis
- Department of Imaging and Pathology, Division of Medical Physics & Quality Assessment, KU Leuven, Herestraat 49 box 7003, 3000, Leuven, Belgium
| | - G Zhang
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - W Coudyzer
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - W Develter
- Department of Imaging and Pathology, Division of Medical Physics & Quality Assessment, KU Leuven, Herestraat 49 box 7003, 3000, Leuven, Belgium
| | - R Bogaerts
- Laboratory of Experimental Radiotherapy, Department of Oncology, Biomedical Sciences Group, University of Leuven, Leuven, Belgium
| | - H Bosmans
- Department of Imaging and Pathology, Division of Medical Physics & Quality Assessment, KU Leuven, Herestraat 49 box 7003, 3000, Leuven, Belgium; Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - F Zanca
- Department of Imaging and Pathology, Division of Medical Physics & Quality Assessment, KU Leuven, Herestraat 49 box 7003, 3000, Leuven, Belgium
| |
Collapse
|
16
|
Shi D, Jin D, Cai W, Zhu Q, Dou X, Fan G, Shen J, Xu L. Serial low-dose quantitative CT perfusion for the evaluation of delayed cerebral ischaemia following aneurysmal subarachnoid haemorrhage. Clin Radiol 2020; 75:131-139. [DOI: 10.1016/j.crad.2019.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
|
17
|
|
18
|
WANG X, LI P, ZHANG W, TANG B. Recent Advances in Fluorescence Imaging of Bioactive Molecules in Neurons and in Vivo. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Xiao Y, Liu P, Liang Y, Stolte S, Sanelli P, Gupta A, Ivanidze J, Fang R. STIR-Net: Deep Spatial-Temporal Image Restoration Net for Radiation Reduction in CT Perfusion. Front Neurol 2019; 10:647. [PMID: 31297079 PMCID: PMC6607281 DOI: 10.3389/fneur.2019.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 02/04/2023] Open
Abstract
Computed Tomography Perfusion (CTP) imaging is a cost-effective and fast approach to provide diagnostic images for acute stroke treatment. Its cine scanning mode allows the visualization of anatomic brain structures and blood flow; however, it requires contrast agent injection and continuous CT scanning over an extended time. In fact, the accumulative radiation dose to patients will increase health risks such as skin irritation, hair loss, cataract formation, and even cancer. Solutions for reducing radiation exposure include reducing the tube current and/or shortening the X-ray radiation exposure time. However, images scanned at lower tube currents are usually accompanied by higher levels of noise and artifacts. On the other hand, shorter X-ray radiation exposure time with longer scanning intervals will lead to image information that is insufficient to capture the blood flow dynamics between frames. Thus, it is critical for us to seek a solution that can preserve the image quality when the tube current and the temporal frequency are both low. We propose STIR-Net in this paper, an end-to-end spatial-temporal convolutional neural network structure, which exploits multi-directional automatic feature extraction and image reconstruction schema to recover high-quality CT slices effectively. With the inputs of low-dose and low-resolution patches at different cross-sections of the spatio-temporal data, STIR-Net blends the features from both spatial and temporal domains to reconstruct high-quality CT volumes. In this study, we finalize extensive experiments to appraise the image restoration performance at different levels of tube current and spatial and temporal resolution scales.The results demonstrate the capability of our STIR-Net to restore high-quality scans at as low as 11% of absorbed radiation dose of the current imaging protocol, yielding an average of 10% improvement for perfusion maps compared to the patch-based log likelihood method.
Collapse
Affiliation(s)
- Yao Xiao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Peng Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Pina Sanelli
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Imaging Clinical Effectiveness and Outcomes Research, Department of Radiology, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Karwacki GM, Vögele S, Blackham KA. Dose reduction in perfusion CT in stroke patients by lowering scan frequency does not affect automatically calculated infarct core volumes. J Neuroradiol 2019; 46:351-358. [PMID: 31034899 DOI: 10.1016/j.neurad.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE CT Perfusion technique (CTP) is a quantitative, easily performed, accepted and reliable method for detection of ischemic brain changes. Based on calculated parameters, the size of ischemic penumbra and irreversibly damaged infarct core can be determined which helps guide treatment decisions. However, due to the dynamic nature of the CTP study, it is dose intensive. This study determines the consequences of retrospectively reducing the number of scans in the dynamic acquisition by half on the volume of the automatically calculated infarct core (non-viable tissue) and penumbra (tissue at risk) volumes. Our hypothesis was that equivalent volumetric information could be obtained at a substantial dose savings. MATERIALS AND METHODS Fifty one consecutive patients with occlusion of M1 and/or M2 segment of the middle cerebral artery and ischemic stroke proven by follow-up MRI were included. CTP scans were first analyzed in a standard fashion and automatically generated volumes measured in milliliters were recorded in a database. A second analysis was conducted after removing every second data acquisition from the sequential CTP scans. Automatic volume measurements were repeated, recorded and compared to the initial values obtained using the full dataset. RESULTS The two CTP protocols were statistically equivalent pertaining to automatic infarct core volume calculation but a case-by-case analysis revealed substantial overestimation in some cases. CONCLUSION Reduction of radiation exposure in CTP without objective loss of accuracy of automatically calculated infarct core volume is feasible but might lead to clinically relevant infarct core overestimation in individual cases.
Collapse
Affiliation(s)
- Grzegorz Marek Karwacki
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland.
| | - Stephan Vögele
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland
| | - Kristine Ann Blackham
- University Hospital Basel, University of Basel, clinic of radiology and nuclear medicine, Basel, Switzerland
| |
Collapse
|
21
|
Intra-arterial pulse wave analysis during thrombectomy for the assessment of collateral status - A feasibility study. PLoS One 2019; 14:e0210572. [PMID: 30629721 PMCID: PMC6328207 DOI: 10.1371/journal.pone.0210572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Purpose Knowledge of the collateralization of an occluded vessel is important for the risk-benefit analysis of difficult revascularization maneuvers during mechanical thrombectomy. If the territory behind a clot is well perfused, one could desist from performing a risky thrombectomy maneuver. The arterial pulse pressure curve may serve as an indicator for the collateralization of an occluded target vessel. We investigated the feasibility of arterial pulse measurements with a standard microcatheter. Methods We measured the intra-arterial blood pressure proximal and distal to the clot in 40 thrombectomy maneuvers in a porcine stroke model. We used a microcatheter (Trevo Pro 18, Stryker, Kalamazoo, CA, USA), a pressure transducer (MEMSCAP SP844), an AdInstruments Powerlab 16/35 workstation, and LabChart 8 Software (AdInstruments, Dunedin, New Zealand). Results Median arterial blood pressure proximal and distal to the clot was 96.0 mmHg (IQR, 23.8 mmHg) and 47.5 mmHg (IQR, 43.5 mmHg), respectively (p < .001). The median difference between systolic maximum and diastolic minimum proximal and distal to the clot decreased significantly from 1.8 mmHg (IQR, 3.6 mmHg) to 0.0 mmHg (IQR, 0.5 mmHg) (p < .001). There was loss of the curve in 26 of 40 cases and loss of pressure in 23 of 40 cases (p = .008). There was no significant correlation between vessel diameter and either loss of the pulse pressure curve (p = .20) or overall pressure loss (p = .31). Conclusion It is possible to measure the pulse pressure proximal and distal to the clot with a standard microcatheter used during mechanical thrombectomy.
Collapse
|
22
|
Messaris GAT, Georgakopoulos DN, Zampakis P, Kalogeropoulou CP, Petsas TG, Panayiotakis GS. Patient dose in brain perfusion imaging using an 80-slice CT system. J Neuroradiol 2018; 46:243-247. [PMID: 30030061 DOI: 10.1016/j.neurad.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Brain CT Perfusion (CTP) is an X-ray imaging technique for the assessment of brain tissue perfusion, which can be used in several different entities. The aim of this study is the evaluation of the radiation dose to patients during a comprehensive brain CT prescription protocol (CPP) consisting of an unenhanced brain CT, a brain CT angiography and a CTP scan. MATERIALS AND METHODS Eighteen patients were studied using an 80-slice CT system, with an iterative reconstruction algorithm. The volume Computed Tomography Dose Index (CTDIvol) and dose length product (DLP) were recorded from the dose report of the system. The calculation of effective dose (ED) was accomplished using the DLP values. RESULTS For the CTP examinations, the CTDIvol ranged from 116.0 to 134.8mGy, with the mean value 119.5mGy. The DLP ranged from 463.9 to 539.2mGy·cm, with the mean value 478mGy·cm. For the CPP, the total ED ranged from 3.31 to 5.07mSv, with the mean value 4.37mSv. CONCLUSIONS These values are lower than the values reported in corresponding studies, including studies utilizing CT systems with more slices.
Collapse
Affiliation(s)
- Gerasimos A T Messaris
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Petros Zampakis
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Theodoros G Petsas
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - George S Panayiotakis
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
23
|
Radiation dose reduction in perfusion CT imaging of the brain using a 256-slice CT: 80 mAs versus 160 mAs. Clin Imaging 2018; 50:188-193. [DOI: 10.1016/j.clinimag.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022]
|
24
|
Rubbert C, Patil KR, Beseoglu K, Mathys C, May R, Kaschner MG, Sigl B, Teichert NA, Boos J, Turowski B, Caspers J. Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission. Eur Radiol 2018; 28:4949-4958. [PMID: 29948072 DOI: 10.1007/s00330-018-5505-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES The pathogenesis leading to poor functional outcome after aneurysmal subarachnoid haemorrhage (aSAH) is multifactorial and not fully understood. We evaluated a machine learning approach based on easily determinable clinical and CT perfusion (CTP) features in the course of patient admission to predict the functional outcome 6 months after ictus. METHODS Out of 630 consecutive subarachnoid haemorrhage patients (2008-2015), 147 (mean age 54.3, 66.7% women) were retrospectively included (Inclusion: aSAH, admission within 24 h of ictus, CTP within 24 h of admission, documented modified Rankin scale (mRS) grades after 6 months. Exclusion: occlusive therapy before first CTP, previous aSAH, CTP not evaluable). A random forests model with conditional inference trees was optimised and trained on sex, age, World Federation of Neurosurgical Societies (WFNS) and modified Fisher grades, aneurysm in anterior vs. posterior circulation, early external ventricular drainage (EVD), as well as MTT and Tmax maximum, mean, standard deviation (SD), range, 75th quartile and interquartile range to predict dichotomised mRS (≤ 2; > 2). Performance was assessed using the balanced accuracy over the training and validation folds using 20 repeats of 10-fold cross-validation. RESULTS In the final model, using 200 trees and the synthetic minority oversampling technique, median balanced accuracy was 84.4% (SD 0.7) over the training folds and 70.9% (SD 1.2) over the validation folds. The five most important features were the modified Fisher grade, age, MTT range, WFNS and early EVD. CONCLUSIONS A random forests model trained on easily determinable features in the course of patient admission can predict the functional outcome 6 months after aSAH with considerable accuracy. KEY POINTS • Features determinable in the course of admission of a patient with aneurysmal subarachnoid haemorrhage (aSAH) can predict the functional outcome 6 months after the occurrence of aSAH. • The top five predictive features were the modified Fisher grade, age, the mean transit time (MTT) range from computed tomography perfusion (CTP), the WFNS grade and the early necessity for an external ventricular drainage (EVD). • The range between the minimum and the maximum MTT may prove to be a valuable biomarker for detrimental functional outcome.
Collapse
Affiliation(s)
- Christian Rubbert
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, D-52425, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Kerim Beseoglu
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Christian Mathys
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, D-26122, Oldenburg, Germany
| | - Rebecca May
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Marius G Kaschner
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Benjamin Sigl
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Nikolas A Teichert
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Johannes Boos
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Bernd Turowski
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Julian Caspers
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425, Jülich, Germany
| |
Collapse
|
25
|
Afat S, Brockmann C, Nikoubashman O, Müller M, Thierfelder KM, Kunz WG, Haberland U, Brockmann MA, Nikolaou K, Wiesmann M, Othman AE. Diagnostic performance of different perfusion algorithms for the detection of angiographical spasm. J Neuroradiol 2018; 45:290-294. [PMID: 29412162 DOI: 10.1016/j.neurad.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 06/16/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To assess the diagnostic utility of different perfusion algorithms for the detection of angiographical terial spasm. METHOD During a 2-year period, 45 datasets from 29 patients (54.2±10,75y, 20F) with suspected cerebral vasospasm after aneurysmal subarachnoid hemorrhage were included. Volume Perfusion CT (VPCT), Non-enhanced CT (NCT) and angiography were performed within 6hours post-ictus. Perfusion maps were generated using a maximum slope (MS) and a deconvolution-based approach (DC). Two blinded neuroradiologists independently evaluated MS and DC maps regarding vasospasm-related perfusion impairment on a 3-point Likert-scale (0=no impairment, 1=impairment affecting <50%, 2=impairment affecting >50% of vascular territory). A third independent neuroradiologist assessed angiography for presence and severity of arterial narrowing on a 3-point Likert scale (0=no narrowing, 1=narrowing affecting <50%, 2=narrowing affecting>50% of artery diameter). MS and DC perfusion maps were evaluated regarding diagnostic accuracy for angiographical arterial spasm with angiography as reference standard. Correlation analysis of angiography findings with both MS and DC perfusion maps was additionally performed. Furthermor, the agreement between MS and DC and inter-reader agreement was assessed. RESULTS DC maps yielded significantly higher diagnostic accuracy than MS perfusion maps (DC:AUC=.870; MS:AUC=.805; P=0.007) with higher sensitivity for DC compared to MS (DC:sensitivity=.758; MS:sensitivity=.625). DC maps revealed stronger correlation with angiography than MS (DC: R=.788; MS: R=694;=<0.001). MS and DC showed substantial agreement (Kappa=.626). Regarding inter-reader analysis, (almost) perfect inter-reader agreement was observed for both MS and DC maps (Kappa≥981). CONCLUSION DC yields significantly higher diagnostic accuracy for the detection of angiographic arterial spasm and higher correlation with angiographic findings compared to MS.
Collapse
Affiliation(s)
- Saif Afat
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolin Brockmann
- Department of Neuroradiology, University Hospital Mainz, 55131 Mainz, Germany
| | - Omid Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074 Aachen, Germany; Department of Diagnostic and Interventional Radiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marguerite Müller
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Kolja M Thierfelder
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Wolfgang G Kunz
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | - Marc A Brockmann
- Department of Neuroradiology, University Hospital Mainz, 55131 Mainz, Germany
| | - Konstantin Nikolaou
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074 Aachen, Germany; Siemens Healthcare GmbH, 91052 Forchheim, Germany.
| |
Collapse
|
26
|
Afat S, Brockmann C, Nikoubashman O, Müller M, Thierfelder KM, Brockmann MA, Nikolaou K, Wiesmann M, Kim JH, Othman AE. Diagnostic Accuracy of Simulated Low-Dose Perfusion CT to Detect Cerebral Perfusion Impairment after Aneurysmal Subarachnoid Hemorrhage: A Retrospective Analysis. Radiology 2018; 287:643-650. [PMID: 29309735 DOI: 10.1148/radiol.2017162707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To evaluate diagnostic accuracy of low-dose volume perfusion (VP) computed tomography (CT) compared with original VP CT regarding the detection of cerebral perfusion impairment after aneurysmal subarachnoid hemorrhage. Materials and Methods In this retrospective study, 85 patients (mean age, 59.6 years; 62 women) with aneurysmal subarachnoid hemorrhage and who were suspected of having cerebral vasospasm at unenhanced CT and VP CT (tube voltage, 80 kVp; tube current-time product, 180 mAs) were included, 37 of whom underwent digital subtraction angiography (DSA) within 6 hours. Low-dose VP CT data sets at tube current-time product of 72 mAs were retrospectively generated by validated realistic simulation. Perfusion maps were generated from both data sets and reviewed by two neuroradiologists for overall image quality, diagnostic confidence and presence and/or severity of perfusion impairment indicating vasospasm. An interventional neuroradiologist evaluated 16 vascular segments at DSA. Diagnostic accuracy of low-dose VP CT was calculated with original VP CT as reference standard. Agreement between findings of both data sets was assessed by using weighted Cohen κ and findings were correlated with DSA by using Spearman correlation. After quantitative volumetric analysis, lesion volumes were compared on both VP CT data sets. Results Low-dose VP CT yielded good ratings of image quality and diagnostic confidence and classified all patients correctly with high diagnostic accuracy (sensitivity, 99.0%; specificity, 99.5%) without significant differences regarding presence and/or severity of perfusion impairment between original and low-dose data sets (Z = -0.447; P = .655). Findings of both data sets correlated significantly with DSA (original, r = 0.671; low dose, r = 0.667). Lesion volume was comparable for both data sets (relative difference, 5.9% ± 5.1 [range, 0.2%-25.0%; median, 4.0%]) with strong correlation (r = 0.955). Conclusion The results suggest that radiation dose reduction to 40% of original dose levels (tube current-time product, 72 mAs) may be performed in VP CT imaging of patients with aneurysmal subarachnoid hemorrhage without compromising the diagnostic accuracy regarding detection of cerebral perfusion impairment indicating vasospasm. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Saif Afat
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Carolin Brockmann
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Omid Nikoubashman
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Marguerite Müller
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Kolja M Thierfelder
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Marc A Brockmann
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Konstantin Nikolaou
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Martin Wiesmann
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Jong Hyo Kim
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| | - Ahmed E Othman
- From the Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany (S.A., O.N., M.M., M.W., A.E.O.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany (S.A., K.N., A.E.O.); Department of Neuroradiology, University Hospital Mainz, Mainz, Germany (M.A.B., C.B.); Institute for Clinical Radiology, Ludwig-Maximilian-University Hospital Munich, Munich, Germany (K.M.T.); Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea (J.H.K.); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J.H.K.); and Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, Suwon, South Korea (J.H.K.)
| |
Collapse
|
27
|
Othman AE, Bongers MN, Zinsser D, Schabel C, Wichmann JL, Arshid R, Notohamiprodjo M, Nikolaou K, Bamberg F. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT. Acta Radiol 2018; 59:4-12. [PMID: 28406049 DOI: 10.1177/0284185117703152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Patients with acute non-traumatic abdominal pain often undergo abdominal computed tomography (CT). However, abdominal CT is associated with high radiation exposure. Purpose To evaluate diagnostic performance of a reduced-dose 100 kVp CT protocol with advanced modeled iterative reconstruction as compared to a linearly blended 120 kVp protocol for assessment of acute, non-traumatic abdominal pain. Material and Methods Two radiologists assessed 100 kVp and linearly blended 120 kVp series of 112 consecutive patients with acute non-traumatic pain (onset < 48 h) regarding image quality, noise, and artifacts on a five-point Likert scale. Both radiologists assessed both series for abdominal pathologies and for diagnostic confidence. Both 100 kVp and linearly blended 120 kVp series were quantitatively evaluated regarding radiation dose and image noise. Comparative statistics and diagnostic accuracy was calculated using receiver operating curve (ROC) statistics, with final clinical diagnosis/clinical follow-up as reference standard. Results Image quality was high for both series without detectable significant differences ( P = 0.157). Image noise and artifacts were rated low for both series but significantly higher for 100 kVp ( P ≤ 0.021). Diagnostic accuracy was high for both series (120 kVp: area under the curve [AUC] = 0.950, sensitivity = 0.958, specificity = 0.941; 100 kVp: AUC ≥ 0.910, sensitivity ≥ 0.937, specificity = 0.882; P ≥ 0.516) with almost perfect inter-rater agreement (Kappa = 0.939). Diagnostic confidence was high for both dose levels without significant differences (100 kVp 5, range 4-5; 120 kVp 5, range 3-5; P = 0.134). The 100 kVp series yielded 26.1% lower radiation dose compared with the 120 kVp series (5.72 ± 2.23 mSv versus 7.75 ± 3.02 mSv, P < 0.001). Image noise was significantly higher in reduced-dose CT (13.3 ± 2.4 HU versus 10.6 ± 2.1 HU; P < 0.001). Conclusion Reduced-dose abdominal CT using 100 kVp yields excellent image quality and high diagnostic accuracy for the assessment of acute non-traumatic abdominal pain.
Collapse
Affiliation(s)
- Ahmed E Othman
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Malte Niklas Bongers
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Dominik Zinsser
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Christoph Schabel
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Rami Arshid
- Department of General, Visceral and Transplantation Surgery, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Mike Notohamiprodjo
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Konstantin Nikolaou
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - Fabian Bamberg
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| |
Collapse
|
28
|
Zeng D, Xie Q, Cao W, Lin J, Zhang H, Zhang S, Huang J, Bian Z, Meng D, Xu Z, Liang Z, Chen W, Ma J. Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2546-2556. [PMID: 28880164 PMCID: PMC5711606 DOI: 10.1109/tmi.2017.2749212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low-dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise components to describe the maximum temporal coherence of spatial structure among phases in a tensor framework intrinsically. Moreover, the low-rank component corresponds to the "background" part with spatial-temporal correlations, e.g., static anatomical contribution, which is stationary over time about structure, and the sparse component represents the time-varying component with spatial-temporal continuity, e.g., dynamic perfusion enhanced information, which is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-RPCA) model which describes the 3-D block groups of the "background" in a tensor is also proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, preclinical monkey data, and clinical patient data clearly demonstrate that the two proposed models can achieve more gains than the existing popular algorithms in terms of both quantitative and visual quality evaluations from low-dose acquisitions, especially as low as 20 mAs.
Collapse
|
29
|
Martin T, Hoffman J, Alger JR, McNitt-Gray M, Wang DJ. Low-dose CT perfusion with projection view sharing. Med Phys 2017; 45:101-113. [PMID: 29080274 DOI: 10.1002/mp.12640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE CT Perfusion (CTP) is a widely used clinical imaging modality. However, CTP typically involves the use of substantial radiation dose (CTDIvol ≥~200 mGy). The purpose of this study is to present a low-dose CTP technique using a projection view-sharing reconstruction algorithm originally developed for dynamic MRI - "K-space Weighted Image Contrast" (KWIC). METHODS The KWIC reconstruction is based on an angle-bisection scheme. In KWIC, a Fourier transform was performed along each projection to form a "k-space"-like CT data space, based on the central-slice theorem. As a projection view-sharing technique, KWIC preserves the spatiotemporal resolution of undersampled CTP data by progressively increasing the number of projection views shared for more distant regions of "k-space". KWIC reconstruction was evaluated on a digital FORBILD head phantom with numerically simulated time-varying objects. The numerically simulated scans were undersampled using the angle-bisection scheme to achieve 50%, 25%, and 12.5% of the original dose (288, 144, and 72 projections, respectively). The area-under-the-curve (AUC), time-to-peak (TTP), and full width half maximum (FWHM) were measured in KWIC recons and compared to fully sampled filtered back projection (FBP) reconstructions. KWIC reconstruction and dose reduction was also implemented for three clinical CTP cases (45 s, 1156 projections per turn, 1 s/turn, CTDIvol 217 mGy). Quantitative perfusion metrics were computed and compared between KWIC reconstructed CTP data and those of standard FBP reconstruction. RESULTS The AUC, TTP, and FWHM in the numerical simzulations were unaffected by the undersampling/dose reduction (down to 12.5% dose) with KWIC reconstruction compared to the fully sampled FBP reconstruction. The normalized root-mean-square-error (NRMSE) of the AUC in the FORBILD head phantom is 0.04, 0.05, and 0.07 for 50%, 25%, and 12.5% KWIC, respectively, as compared to FBP reconstruction. The cerebral blood flow (CBF) and cerebral blood volume had no significant difference between FBP and 50%, 25%, and 12.5% KWIC reconstructions (P > 0.05). CONCLUSIONS This study demonstrates that KWIC preserves perfusion metrics for CTP with substantially reduced dose. Clinical implementation will require further investigation into methods of rapid switching of a CT x-ray source.
Collapse
Affiliation(s)
- Thomas Martin
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - John Hoffman
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeff R Alger
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael McNitt-Gray
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Danny Jj Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA.,Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Rubbert C, Caspers J, Petridis AK, Turowski B, May R. Dynamics of cerebral perfusion deficits after aneurysmal SAH – predictive value of early MTT for subsequent MTT deterioration. J Neuroradiol 2017; 44:371-376. [DOI: 10.1016/j.neurad.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 12/16/2022]
|
31
|
Maillot O, Attyé A, Boutet C, Boubagra K, Perolat R, Zanolla M, Grand S, Schmerber S, Krainik A. The relationship between post-traumatic ossicular injuries and conductive hearing loss: A 3D-CT study. J Neuroradiol 2017; 44:333-338. [DOI: 10.1016/j.neurad.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/23/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
|
32
|
Quantitative accuracy of computed tomography perfusion under low-dose conditions, measured using a hollow-fiber phantom. Jpn J Radiol 2017; 35:373-380. [PMID: 28451938 DOI: 10.1007/s11604-017-0642-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The purpose of this study was to investigate the quantitative accuracy under low-dose conditions on computed tomography (CT) perfusion using a hollow-fiber phantom that had the theoretical absolute values of perfusion indices. MATERIALS AND METHODS Our phantom comprised two components, i.e., a hollow-fiber hemodialyzer to pump the diluted contrast material and a surrounding syringe-shaped X-ray-absorbing body to simulate the absorption of X-rays by a brain and cranium. We performed CTP scans on the phantom under various dose conditions ranging from 20 to 140 mA using a 64-row CT scanner, measuring experimental cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) values using a deconvolution algorithm. RESULTS The theoretical value of the CBV was within the 95% confidence interval of CBV values measured under 80 mA. The CBV measured under low-dose settings and all CBF values measured were smaller than the theoretically calculated ones, and all MTT values measured were larger. All measured values of the CBV, CBF, MTT, and TTP decreased with an increase in image noise under lower dose conditions. CONCLUSION It is difficult to define a low-dose limit in clinical scan conditions because of the complex characteristics of perfusion indices.
Collapse
|
33
|
Sun H, Li W, Ma J, Liu Y, You C. CT perfusion diagnoses delayed cerebral ischemia in the early stage of the time-window after aneurysmal subarachnoid hemorrhage. J Neuroradiol 2017; 44:313-318. [PMID: 28237366 DOI: 10.1016/j.neurad.2016.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE It has been acknowledged that delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH) can be diagnosed by CT perfusion (CTP) in the DCI time-window. We evaluated the diagnostic accuracy of CTP for DCI during the early stage of the time-window. MATERIALS AND METHODS We prospectively enrolled patients with aneurysmal SAH. DCI was defined as both new cerebral infarction and clinical deterioration after SAH. CTP was performed by using a standardized protocol with predefined regions of interest in 4 to 6 days after SAH. We quantitatively evaluated the diagnostic accuracy of eight CTP parameters (4 for absolute parameters and 4 for relative parameters). The receiver operator characteristic (ROC) curves of all parameters were generated and the optimal threshold values were derived for the calculation of sensitivities and specificities. RESULTS Fifty-three patients were enrolled and 20 patients were diagnosed with DCI. In the analysis of absolute CTP parameters, CBF and MTT had areas under the curve (AUC) >0.75 and the optimal threshold value was 40.4mL/100g/min and 3.78seconds, respectively. Through the evaluation of relative CTP parameters, all 4 parameters had AUC >0.75 and the optimal threshold value was 0.9 for CBV ratio, 0.85 for CBF ratio, 0.32seconds for MTT difference and 1.31seconds for TTP difference. CONCLUSIONS Besides two absolute CTP parameters (CBV and TTP), all six CTP parameters can be used as good diagnostic tests for DCI in the early stage of the time-window.
Collapse
Affiliation(s)
- Haogeng Sun
- Department of Neurosurgery, West China Hospital of Sichuan University, 37, Guoxuexiang Street, Chengdu 610041, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, 37, Guoxuexiang Street, Chengdu 610041, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, 37, Guoxuexiang Street, Chengdu 610041, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, 37, Guoxuexiang Street, Chengdu 610041, China.
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University, 37, Guoxuexiang Street, Chengdu 610041, China
| |
Collapse
|
34
|
Othman AE, Afat S, Brockmann C, Nikoubashman O, Bier G, Brockmann MA, Nikolaou K, Tai JH, Yang ZP, Kim JH, Wiesmann M. Low-Dose Volume-Perfusion CT of the Brain: Effects of Radiation Dose Reduction on Performance of Perfusion CT Algorithms. Clin Neuroradiol 2015; 27:311-318. [PMID: 26669592 DOI: 10.1007/s00062-015-0489-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE We aimed to compare different computed tomography (CT) perfusion post-processing algorithms regarding image quality of perfusion maps from low-dose volume perfusion CT (VPCT) and their diagnostic performance regarding the detection of ischemic brain lesions. METHODS AND MATERIALS We included VPCT data of 21 patients with acute stroke (onset < 6h), which were acquired at 80 kV and 180 mAs. Low-dose VPCT datasets with 72 mAs (40 % of original dose) were generated using realistic low-dose simulation. Perfusion maps (cerebral blood volume (CBV); cerebral blood flow (CBF) from original and low-dose datasets were generated using two different commercially available post-processing methods: deconvolution-based method (DC) and maximum slope algorithm (MS). The resulting DC and MS perfusion maps were compared regarding perfusion values, signal-to-noise ratio (SNR) as well as image quality and diagnostic accuracy as rated by two blinded neuroradiologists. RESULTS Quantitative perfusion parameters highly correlated for both algorithms and both dose levels (r ≥ 0.613, p < 0.001). Regarding SNR levels and image quality of the CBV maps, no significant differences between DC and MS were found (p ≥ 0.683). Low-dose MS CBF maps yielded significantly higher SNR levels (p < 0.001) and quality scores (p = 0.014) than those of DC. Low-dose CBF and CBV maps from both DC and MS yielded high sensitivity and specificity for the detection of ischemic lesions (sensitivity ≥ 0.82, specificity ≥ 0.90). CONCLUSION Our results indicate that both methods produce diagnostically sufficient perfusion maps from simulated low-dose VPCT. However, MS produced CBF maps with significantly higher image quality and SNR than DC, indicating that MS might be more suitable for low-dose VPCT imaging.
Collapse
Affiliation(s)
- A E Othman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany.,Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - S Afat
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - C Brockmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - O Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - G Bier
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - M A Brockmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| | - K Nikolaou
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, 72076, Tübingen, Germany
| | - J H Tai
- Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, 433-270, Suwon, South Korea
| | - Z P Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 433-270, Suwon, South Korea
| | - J H Kim
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, 433-270, Suwon, South Korea. .,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-Ro, Chongno-gu, 110-744, Seoul, South Korea. .,Center for Medical-IT Convergence Technology Research, Advanced Institute of Convergence Technology, 433-270, Suwon, South Korea.
| | - M Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|