1
|
Juttukonda MR, Li B, Almaktoum R, Stephens KA, Yochim KM, Yacoub E, Buckner RL, Salat DH. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging. Neuroimage 2021; 230:117807. [PMID: 33524575 PMCID: PMC8185881 DOI: 10.1016/j.neuroimage.2021.117807] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) has become a popular approach for studying cerebral hemodynamics in a range of disorders and has recently been included as part of the Human Connectome Project-Aging (HCP-A). Due to the high spatial resolution and multiple post-labeling delays, ASL data from HCP-A holds promise for localization of hemodynamic signals not only in gray matter but also in white matter. However, gleaning information about white matter hemodynamics with ASL is challenging due in part to longer blood arrival times in white matter compared to gray matter. In this work, we present an analytical approach for deriving measures of cerebral blood flow (CBF) and arterial transit times (ATT) from the ASL data from HCP-A and report on gray and white matter hemodynamics in a large cohort (n = 234) of typically aging adults (age 36–90 years). Pseudo-continuous ASL data were acquired with labeling duration = 1500 ms and five post-labeling delays = 200 ms, 700 ms, 1200, 1700 ms, and 2200 ms. ATT values were first calculated on a voxel-wise basis through normalized cross-correlation analysis of the acquired signal time course in that voxel and an expected time course based on an acquisition-specific Bloch simulation. CBF values were calculated using a two-compartment model and with age-appropriate blood water longitudinal relaxation times. Using this approach, we found that white matter CBF reduces (ρ = 0.39) and white matter ATT elongates (ρ = 0.42) with increasing age (p < 0.001). In addition, CBF is lower and ATTs are longer in white matter compared to gray matter across the adult lifespan (Wilcoxon signed-rank tests; p < 0.001). We also found sex differences with females exhibiting shorter white matter ATTs than males, independently of age (Wilcoxon rank-sum test; p < 0.001). Finally, we have shown that CBF and ATT values are spatially heterogeneous, with significant differences in cortical versus subcortical gray matter and juxtacortical versus periventricular white matter. These results serve as a characterization of normative physiology across the human lifespan against which hemodynamic impairment due to cerebrovascular or neurodegenerative diseases could be compared in future studies.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Neurology, Ruijin Hospital & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Randa Almaktoum
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kimberly A Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kathryn M Yochim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnessota, Minneapolis, MN, United States
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Psychology, Harvard University, Cambridge, MA, United States; Department of Neuroscience, Harvard University, Cambridge, MA, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
2
|
Arterial hypertension and cerebral hemodynamics: impact of head-down tilt on cerebral blood flow (arterial spin-labeling-MRI) in healthy and hypertensive patients. J Hypertens 2020; 39:979-986. [PMID: 33306520 DOI: 10.1097/hjh.0000000000002709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertension affects cerebrovascular autoregulation and increases the risk of cerebrovascular events and dementia. Notably, it is associated with cerebrovascular remodeling and lower resting cerebral blood flow (CBF). We wanted to determine, using arterial spin-labeling-MRI, the impact of a head-down tilt (HDT) dynamic maneuver on CBF in hypertensive patients. METHODS The current prospective study measured 36 patients' CBFs (18 normotensive individuals; 18 hypertensive patients) on 1.5T arterial spin-labeling-MRI in the supine position and after 4 min at -15° HDT. We reconstructed CBF maps of left and right subcortical nuclear gray matter, cortical gray matter and white matter (16 structures) to explore cerebrovascular autoregulation modification under dynamic conditions. RESULTS Normotensive and hypertensive participants had no significant CBF differences in the supine position. After HDT, CBF mean variations (CBF-mVs) across all structures declined (mean -5.8%) for the whole population (n = 36), with -6.6 and -7.6% decreases, respectively, in white matter and gray matter (P < 0.001). Left and right accumbens nuclei had the largest changes (-9.6 and -9.2%, respectively; P < 0.001). No CBF-mV difference (0/16) was found in hypertensive patients after HDT, whereas normotensive participants' CBF-mVs changed significantly in four structures (left and right accumbens, putamen and left caudate nucleus) and gray matter. Hypertensive patients exhibited fewer CBF-mVs in left caudate nuclei (P = 0.039) and cortical gray matter (P = 0.013). Among hypertensive patients, people with diabetes had smaller CBF-mVs than people without diabetes. CONCLUSION Our results highlight the significantly different CBF reactions to HDT of normotensive and hypertensive participants. They support the hypothesis that hypertension is responsible for deficient cerebrovascular autoregulation.
Collapse
|
3
|
Mejdoubi M, Pavilla A, Colombani S, Duvauferrier R, Cepeda Ibarra Y, Seiller I. Impact of Head‐Down Position on Cerebral Blood Flow in Healthy Subjects: An Arterial Spin‐Labeling MR Perfusion Study. J Magn Reson Imaging 2019; 51:218-224. [PMID: 31074120 DOI: 10.1002/jmri.26783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mehdi Mejdoubi
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Aude Pavilla
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Sylvie Colombani
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Régis Duvauferrier
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Yamilet Cepeda Ibarra
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| | - Ian Seiller
- Department of Neuroradiology, Pierre‐Zobda‐Quitman HospitalUniversity Hospital of Martinique French West Indies France
| |
Collapse
|
4
|
Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease. J Neuroradiol 2018; 46:29-35. [PMID: 29604324 DOI: 10.1016/j.neurad.2018.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/10/2018] [Accepted: 03/10/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare blood T1 estimation approaches used for quantifying cerebral blood flow (CBF) with arterial spin labeled (ASL) perfusion MRI in a developmental cohort of chronic kidney disease (CKD) patients with anemia and a control group. METHODS 61 patients with CKD and 47 age-matched control subjects were studied. Blood T1 approaches included: (1) a fixed value, (2) estimation based on measured hematocrit (Hct), and (3) estimation based on Age+Sex using a published formula. Resulting T1 and CBF values were compared along with group, age and sex effects. RESULTS Highly significant group differences in CBF using fixed blood T1 were reduced when Hct-corrected blood T1 was used, and were eliminated entirely when using the Age+Sex estimated approach. In the control cohort, fixed T1 method showed the strongest correlations of CBF with age and sex. Hct-corrected T1 preserved a significant correlation between CBF and age and sex, while Age+Sex estimated T1 produced a poor fit of CBF with age and sex. CONCLUSIONS Blood T1 estimation method can confound the interpretation of CBF changes measured using ASL MRI in patients with CKD. Blood T1 should ideally be corrected for hematocrit effects in clinical populations with anemia.
Collapse
|
5
|
Kumar S, Nagesh CP, Thomas B, Radhakrishnan A, Menon RN, Kesavadas C. Arterial spin labeling hyperperfusion in Rasmussen's encephalitis: Is it due to focal brain inflammation or a postictal phenomenon? J Neuroradiol 2017; 45:6-14. [PMID: 28923528 DOI: 10.1016/j.neurad.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/09/2017] [Accepted: 08/06/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE The study evaluated the utility of arterial spin labeling (ASL) perfusion imaging in Rasmussen's encephalitis (RE). MATERIAL AND METHODS The hospital electronic database was searched using the search words "encephalitis," "autoimmune encephalitis" and "Rasmussen's encephalitis" for the period of 1 Jan 2015 to 31 Jan 2017. Clinically diagnosed cases of RE for which epilepsy protocol magnetic resonance imaging (MRI) with perfusion imaging (ASL) performed on a 3T scanner were retrieved. The diagnosis of RE was based on Bien's criteria (Bien et al., 2005). We obtained patient's demographic details, clinical features, electrophysiological studies, and follow-up data from electronic hospital records. RESULTS We included nine patients with RE of whom seven patients showed increased perfusion, and two patients decreased perfusion. Among these patients, MRI changes of gyral hyperintensity without volume loss corresponded to regional ASL hyperperfusion in six patients and ASL hypoperfusion in one patient. Two patients who showed ASL hypoperfusion had corresponding atrophy on MRI. Eight patients of RE had epilepsia partialis continua (EPC) or daily seizures, and one patient was seizure-free post-surgery. Five patients showed a concordance of ASL hyperperfusion with clinical ictal onset zone. Among the seven patients with ASL hyperperfusion, the finding was concordant (complete or partial) with the electroencephalogram (EEG) ictal onset zone in six patients and with interictal epileptiform discharges (IED) in seven patients. CONCLUSION Increased perfusion in ASL of the involved brain parenchyma in RE is a common MRI finding and may be due to either active inflammation of the brain involved or a seizure-related finding.
Collapse
Affiliation(s)
- Savith Kumar
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| | - Chinmay P Nagesh
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| | - Ashalatha Radhakrishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India.
| |
Collapse
|
6
|
Geerts B, Bernardeschi D, Di Maria F, Law-ye B, Dormont D, Pyatigorskaya N. Post-surgery pCASL perfusion MRI of endolymphatic sac tumor. J Neuroradiol 2017; 44:345-347. [DOI: 10.1016/j.neurad.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
7
|
Ishida S, Miyati T, Ohno N, Hiratsuka S, Alperin N, Mase M, Gabata T. MRI-based assessment of acute effect of head-down tilt position on intracranial hemodynamics and hydrodynamics. J Magn Reson Imaging 2017; 47:565-571. [PMID: 28577333 DOI: 10.1002/jmri.25781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To quantify the acute effect of the head-down tilt (HDT) posture on intracranial hemodynamics and hydrodynamics. MATERIALS AND METHODS We evaluated the intracranial physiological parameters, blood flow-related parameters, and brain morphology in the HDT (-6° and -12°) and the horizontal supine (HS) positions. Seven and 15 healthy subjects were scanned for each position using 3.0 T magnetic resonance imaging system. The peak-to-peak intracranial volume change, the peak-to-peak cerebrospinal fluid (CSF) pressure gradient (PGp-p ), and the intracranial compliance index were calculated from the blood and CSF flow determined using a cine phase-contrast technique. The brain volumetry was conducted using SPM12. The measurements were compared using the Wilcoxon signed-rank test or a paired t-test. RESULTS No measurements changed in the -6° HDT. The PGp-p and venous outflow of the internal jugular veins (IJVs) in the -12° HDT were significantly increased compared to the HS (P < 0.001 and P = 0.025, respectively). The cross-sectional areas of the IJVs were significantly larger (P < 0.001), and the maximum, minimum, and mean blood flow velocity of the IJVs were significantly decreased (P = 0.003, < 0.001, and = 0.001, respectively) in the -12° HDT. The mean blood flow velocities of the internal carotid arteries were decreased (P = 0.023). Neither position affected the brain volume. CONCLUSION Pressure gradient and venous outflow were increased in accordance with the elevation of the intracranial pressure as an acute effect of the HDT. However, the CSF was not constantly shifted from the spinal canal to the cranium. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:565-571.
Collapse
Affiliation(s)
- Shota Ishida
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,Radiological center, University of Fukui Hospital, Fukui, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Naoki Ohno
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Shinnosuke Hiratsuka
- Department of Radiology, Shiga University of Medical Science Hospital, Shiga, Japan
| | - Noam Alperin
- Department of Radiology, University of Miami, Miami, Florida, USA
| | - Mitsuhito Mase
- Department of Neurosurgery and Restorative Neuroscience, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Hospital, Ishikawa, Japan
| |
Collapse
|
8
|
Kramer LA, Hasan KM, Sargsyan AE, Marshall-Goebel K, Rittweger J, Donoviel D, Higashi S, Mwangi B, Gerlach DA, Bershad EM. Quantitative MRI volumetry, diffusivity, cerebrovascular flow, and cranial hydrodynamics during head-down tilt and hypercapnia: the SPACECOT study. J Appl Physiol (1985) 2017; 122:1155-1166. [DOI: 10.1152/japplphysiol.00887.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 01/17/2023] Open
Abstract
To improve the pathophysiological understanding of visual changes observed in astronauts, we aimed to use quantitative MRI to measure anatomic and physiological responses during a ground-based spaceflight analog (head-down tilt, HDT) combined with increased ambient carbon dioxide (CO2). Six healthy, male subjects participated in the double-blinded, randomized crossover design study with two conditions: 26.5 h of −12° HDT with ambient air and with 0.5% CO2, both followed by 2.5-h exposure to 3% CO2. Volume and mean diffusivity quantification of the lateral ventricle and phase-contrast flow sequences of the internal carotid arteries and cerebral aqueduct were acquired at 3 T. Compared with supine baseline, HDT (ambient air) resulted in an increase in lateral ventricular volume ( P = 0.03). Cerebral blood flow, however, decreased with HDT in the presence of either ambient air or 0.5% CO2( P = 0.002 and P = 0.01, respectively); this was partially reversed by acute 3% CO2exposure. Following HDT (ambient air), exposure to 3% CO2increased aqueductal cerebral spinal fluid velocity amplitude ( P = 0.01) and lateral ventricle cerebrospinal fluid (CSF) mean diffusivity ( P = 0.001). We concluded that HDT causes alterations in cranial anatomy and physiology that are associated with decreased craniospinal compliance. Brief exposure to 3% CO2augments CSF pulsatility within the cerebral aqueduct and lateral ventricles.NEW & NOTEWORTHY Head-down tilt causes increased lateral ventricular volume and decreased cerebrovascular flow after 26.5 h. Additional short exposure to 3% ambient carbon dioxide levels causes increased cerebrovascular flow associated with increased cerebrospinal fluid pulsatility at the cerebral aqueduct. Head-down tilt with chronically elevated 0.5% ambient carbon dioxide and acutely elevated 3% ambient carbon dioxide causes increased mean diffusivity of cerebral spinal fluid within the lateral ventricles.
Collapse
Affiliation(s)
- Larry A. Kramer
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | | | - Karina Marshall-Goebel
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medicine, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Dorit Donoviel
- Department of Pharmacology and Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Saki Higashi
- Tokushima University Medical School, Tokushima, Japan
| | - Benson Mwangi
- Department of Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas; and
| | - Darius A. Gerlach
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Eric M. Bershad
- Neurology and Space Medicine, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
9
|
Distribution of intravoxel incoherent motion MRI-related parameters in the brain: evidence of interhemispheric asymmetry. Clin Radiol 2017; 72:94.e1-94.e6. [DOI: 10.1016/j.crad.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/08/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
|