1
|
Xiong Y, Shao W, Wang J, Yang S, Zhu W, Zhang Q. Application of neurite orientation dispersion and density imaging in characterizing brain microstructural changes in classical trigeminal neuralgia and a comparison between the left and right sides. Pain 2025:00006396-990000000-00894. [PMID: 40334048 DOI: 10.1097/j.pain.0000000000003614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/03/2025] [Indexed: 05/09/2025]
Abstract
ABSTRACT Diffusion tensor imaging can detect brain white matter changes in classical trigeminal neuralgia (TN). However, it lacks specificity for individual tissue microstructural features, such as neurite density, orientation dispersions, and extracellular edema. Neurite orientation dispersion and density imaging (NODDI), a novel diffusion magnetic resonance imaging (MRI) technique, can provide these distinct indices. We characterized brain microstructural alterations in patients with unilateral TN using NODDI and compared the difference between left- and right-side TN (LTN and RTN, respectively). Diffusion-weighted imaging was performed on 39 patients with LTN, 37 patients with RTN, and 37 healthy controls. Neurite orientation dispersion and density imaging-related indices, including the intracellular volume fraction (Vic), orientation dispersion index (ODI), and isotropic volume fraction (Fiso), were estimated and compared using tract-based spatial statistics and voxel-based region-of-interest analysis. The LTN and RTN groups exhibited microstructural abnormalities in white and gray matter as measured by decreased fractional anisotropy and Vic and elevated Fiso, respectively. These alterations were associated with clinical features and were mainly located in the frontal lobe, corona radiata, internal capsule, and thalamus. The angular variation of neurites, characterized by ODI, exhibited no significant changes between TN and control groups. Patients with classical TN of either side exhibited reduced Vic and increased Fiso, which indicated decreased density of axons and dendrites and neuroinflammatory edema in bilateral hemispheres. Neurite orientation dispersion and density imaging is a useful technique for in vivo diffusion MRI of white and gray matter in the brain, which provides additional metrics and information closely related to the tissue microstructure that merits further study of TN pathogenesis.
Collapse
Affiliation(s)
| | - Wen Shao
- Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Shaolin Yang
- Department of Bioengineering and Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Qiang Zhang
- Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Hakhu S, Hareesh P, Hooyman A, VanGilder JL, Yalim J, Baxter L, Hu L, Zhou Y, Schilling K, Beeman SC. White matter characterization in regions of edema surrounding meningioma brain tumor using diffusion MRI: A comparative study of DTI and NODDI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325393. [PMID: 40297436 PMCID: PMC12036425 DOI: 10.1101/2025.04.07.25325393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
White matter (WM) tract detection is critical in presurgical planning of tumor resection; however, standard-of-care diffusion tensor imaging (DTI) often fails to characterize white matter tracts through regions of edema. This is because the presence of edema has the effect of increasing the isotropic volume fraction within a voxel and thus marginalizing the anisotropic volume fraction associated with white matter presence and directionality. More recent biophysical models of diffusion, such as neurite orientation dispersion and density imaging (NODDI), account for isotropic and anisotropic volume fractions within voxels by compartmentalizing the diffusion signal based on an assumed tissue microenvironment, e.g., "free water" (cerebrospinal fluid (CSF), interstitial fluid (ISF), edema), "intra-neurite", and "extra-neurite" tissue, as a sphere, stick, and tensor, respectively. We hypothesize that a low fractional anisotropy (FA), low orientation dispersion index (ODI) value and high fractional isotropic volume (FISO) would be observed in white matter regions containing edema but a high FA, low ODI value and low FISO would be observed in healthy-appearing contralateral white matter. In our study, we test this hypothesis using multi-shell diffusion MRI data collected from patients bearing meningioma brains tumors. Brains bearing meningioma tumors are selected in this study as meningiomas rarely invade the brain parenchyma and we can thus assume that our analyses of edematous regions are not confounded by infiltrating tumor cells. Here, we show that NODDI-based characterization of white matter is more sensitive than that of standard-of-care DTI through regions of edema. Future studies will focus on implementation of biophysical model-based tractography in cases of glioma and translation of biophysical model-based tractography to the operating room.
Collapse
Affiliation(s)
- Sasha Hakhu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Parvathy Hareesh
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | | | - Jason Yalim
- Computational Research Accelerator, Arizona State University, Tempe, AZ
| | | | | | | | | | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| |
Collapse
|
3
|
He L, Chen M, Li H, Shi X, Qiu Z, Xu X. Differentiation between high-grade gliomas and solitary brain metastases based on multidiffusion MRI model quantitative analysis. Front Oncol 2024; 14:1401748. [PMID: 39469636 PMCID: PMC11513521 DOI: 10.3389/fonc.2024.1401748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Background and purpose Differentiating high-grade gliomas (HGGs) from solitary brain metastases (SBMs) using conventional magnetic resonance imaging (MRI) remains challenging due to their similar imaging features. This study aimed to evaluate the diagnostic performance of advanced diffusion models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator magnetic resonance imaging (MAP-MRI), incomparison to traditional techniques like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) for distinguishing HGGs from SBMs. Methods In total, 17 patients with HGGs and 26 patients with SBMs were prospectively recruited based on the established inclusion and exclusion criteria. Structural MRI sequences and diffusion spectrum imaging (DSI) were utilized to assess quantitative parameter models, including NODDI, MAP-MRI, DWI, DTI, and DKI. Quantitative parameters were measured for both the tumor parenchymal area and the peritumoral edema area. The quantitative parameters of the two patient groups were compared using either the independent Student's t-test or the Mann-Whitney U test. The effectiveness of each model was evaluated using receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC). Finally, the DeLong test was employed to compare the diagnostic performance of each model through pairwise comparisons of ROC curves. Results Isotropic volume fraction (Viso) based on NODDI; mean squared displacement (MSD) and the return to plane probabilities (RTPP) based on MAP-MRI; radial diffusivity (RDk) and mean diffusivity (MDk) based on DKI; and axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) based on DTI of the peritumoral edema tumor were significantly different between HGGs and SBMs (p < 0.05). The optimal single discriminant parameters for each model are NODDI_Viso, MAP-MRI_MSD, DKI_MDk, and DTI_AD. Among these, the AUC of Viso (0.809) exceeds that of MSD (0.733), MDk (0.718), and AD (0.779). The combined model, which incorporates DTI_AD, DKI_RD, and NODDI_Viso, demonstrated superior diagnostic performance (0.897). Conclusions Advanced diffusion MRI quantitative parameters derived from NODDI, such as Viso, have the potential to enhance the differentiation between HGGs and SBMs. The integrated utilization of these models is anticipated to enhance diagnostic accuracy and refine MRI protocols for brain tumor assessment.
Collapse
Affiliation(s)
- Libing He
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meining Chen
- MRI Research Institute, Huaxi MR Research Center (HMRRC), Chengdu, Sichuan, China
| | - Hongjian Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiran Shi
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Bai J, He M, Gao E, Yang G, Zhang C, Yang H, Dong J, Ma X, Gao Y, Zhang H, Yan X, Zhang Y, Cheng J, Zhao G. High-performance presurgical differentiation of glioblastoma and metastasis by means of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics. Eur Radiol 2024; 34:6616-6628. [PMID: 38485749 PMCID: PMC11399163 DOI: 10.1007/s00330-024-10686-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To evaluate the performance of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM). MATERIALS AND METHODS In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison. RESULTS The validation dataset results revealed that the performance of a single NODDI parameter map model was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimination (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar. CONCLUSION The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM. CLINICAL RELEVANCE STATEMENT The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic features that describe tumor heterogeneity. KEY POINTS • The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for preoperative discrimination between glioblastoma and solitary brain metastasis. • Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best in distinguishing the two types of tumors. • The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.
Collapse
Affiliation(s)
- Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Mengyang He
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Chengxiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Hongxi Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Dong
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Xu Yan
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Naval-Baudin P, Pons-Escoda A. "Pushing the Envelope": advanced imaging-data-analysis meets NODDI to differentiate glioblastoma and brain metastasis. Eur Radiol 2024; 34:6614-6615. [PMID: 38634878 DOI: 10.1007/s00330-024-10764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Pablo Naval-Baudin
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Albert Pons-Escoda
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Neuro-Oncology Unit, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| |
Collapse
|
6
|
Colakoglu A, Genç B, Aslan K, Incesu L. Advanced Diffusion MRI in the Differential Diagnosis of Hemorrhagic Cavernous Malformations in the Brain: A Case Report. Cureus 2024; 16:e69095. [PMID: 39391419 PMCID: PMC11466255 DOI: 10.7759/cureus.69095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Cavernous malformations, low-flow vascular lesions predominantly found in the brain and occasionally in the spinal cord, can be congenital or acquired, with acquired forms often being single and congenital ones multiple. While many patients remain asymptomatic, hemorrhage from these lesions can lead to significant neurological symptoms. This case report describes a 35-year-old female with a hemorrhagic lesion in the right precentral gyrus, initially challenging to diagnose due to atypical imaging findings. Advanced magnetic resonance imaging (MRI) techniques, including dynamic susceptibility contrast perfusion and advanced diffusion methods, were employed to distinguish the lesion from other hemorrhagic conditions and suggested that the lesion is benign in nature. Follow-up MRI revealed regression of the hemorrhage and typical characteristics of a cavernous malformation. The case underscores the utility of advanced diffusion MRI techniques in differentiating hemorrhagic cavernous malformations from other pathologies, particularly in complex cases where conventional imaging may fall short.
Collapse
Affiliation(s)
- Arda Colakoglu
- Radiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, TUR
| | - Barış Genç
- Radiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, TUR
| | - Kerim Aslan
- Radiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, TUR
| | - Lütfi Incesu
- Radiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, TUR
| |
Collapse
|
7
|
Bai J, He M, Gao E, Yang G, Yang H, Dong J, Ma X, Gao Y, Zhang H, Yan X, Zhang Y, Cheng J, Zhao G. Radiomic texture analysis based on neurite orientation dispersion and density imaging to differentiate glioblastoma from solitary brain metastasis. BMC Cancer 2023; 23:1231. [PMID: 38098041 PMCID: PMC10722697 DOI: 10.1186/s12885-023-11718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND We created discriminative models of different regions of interest (ROIs) using radiomic texture features of neurite orientation dispersion and density imaging (NODDI) and evaluated the feasibility of each model in differentiating glioblastoma multiforme (GBM) from solitary brain metastasis (SBM). METHODS We conducted a retrospective study of 204 patients with GBM (n = 146) or SBM (n = 58). Radiomic texture features were extracted from five ROIs based on three metric maps (intracellular volume fraction, orientation dispersion index, and isotropic volume fraction of NODDI), including necrosis, solid tumors, peritumoral edema, tumor bulk volume (TBV), and abnormal bulk volume. Four feature selection methods and eight classifiers were used for the radiomic texture feature selection and model construction. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of the models. Routine magnetic resonance imaging (MRI) radiomic texture feature models generated in the same manner were used for the horizontal comparison. RESULTS NODDI-radiomic texture analysis based on TBV subregions exhibited the highest accuracy (although nonsignificant) in differentiating GBM from SBM, with area under the ROC curve (AUC) values of 0.918 and 0.882 in the training and test datasets, respectively, compared to necrosis (AUCtraining:0.845, AUCtest:0.714), solid tumor (AUCtraining:0.852, AUCtest:0.821), peritumoral edema (AUCtraining:0.817, AUCtest:0.762), and ABV (AUCtraining:0.834, AUCtest:0.779). The performance of the five ROI radiomic texture models in routine MRI was inferior to that of the NODDI-radiomic texture model. CONCLUSION Preoperative NODDI-radiomic texture analysis based on TBV subregions shows great potential for distinguishing GBM from SBM.
Collapse
Affiliation(s)
- Jie Bai
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Mengyang He
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Hongxi Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Dong
- School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xiaoyue Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Yufei Gao
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Xu Yan
- MR Research Collaboration, Siemens Healthineers, Wuhan, 201318, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. Jianshe Dong Road, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Felefly T, Roukoz C, Fares G, Achkar S, Yazbeck S, Meyer P, Kordahi M, Azoury F, Nasr DN, Nasr E, Noël G, Francis Z. An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection. J Digit Imaging 2023; 36:2335-2346. [PMID: 37507581 PMCID: PMC10584786 DOI: 10.1007/s10278-023-00886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D'Wave's quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.
Collapse
Affiliation(s)
- Tony Felefly
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon.
- ICube Laboratory, University of Strasbourg, Strasbourg, France.
- Radiation Oncology Department, Hôtel-Dieu de Lévis, Lévis, QC, Canada.
| | - Camille Roukoz
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Fares
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
- Physics Department, Saint Joseph University, Beirut, Lebanon
| | - Samir Achkar
- Radiation Oncology Department, Gustave Roussy Cancer Campus, 94805, Villejuif, France
| | - Sandrine Yazbeck
- Department of Radiology, University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD, 21201, USA
| | - Philippe Meyer
- Medical Physics Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- IMAGeS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
| | | | - Fares Azoury
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Dolly Nehme Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Elie Nasr
- Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Georges Noël
- Radiotherapy Department, Institut de Cancérologie de Strasbourg (ICANS), 67200, Strasbourg, France
- Radiobiology Department, IMIS Unit, IRIS Platform, ICube, University of Strasbourg, 67085, Strasbourg Cedex, France
- Faculty of Medicine, University of Strasbourg, 67000, Strasbourg, France
| | - Ziad Francis
- Physics Department, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
9
|
Würtemberger U, Erny D, Rau A, Hosp JA, Akgün V, Reisert M, Kiselev VG, Beck J, Jankovic S, Reinacher PC, Hohenhaus M, Urbach H, Diebold M, Demerath T. Mesoscopic Assessment of Microstructure in Glioblastomas and Metastases by Merging Advanced Diffusion Imaging with Immunohistopathology. AJNR Am J Neuroradiol 2023; 44:1262-1269. [PMID: 37884304 PMCID: PMC10631536 DOI: 10.3174/ajnr.a8022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND PURPOSE Glioblastomas and metastases are the most common malignant intra-axial brain tumors in adults and can be difficult to distinguish on conventional MR imaging due to similar imaging features. We used advanced diffusion techniques and structural histopathology to distinguish these tumor entities on the basis of microstructural axonal and fibrillar signatures in the contrast-enhancing tumor component. MATERIALS AND METHODS Contrast-enhancing tumor components were analyzed in 22 glioblastomas and 21 brain metastases on 3T MR imaging using DTI-fractional anisotropy, neurite orientation dispersion and density imaging-orientation dispersion, and diffusion microstructural imaging-micro-fractional anisotropy. Available histopathologic specimens (10 glioblastomas and 9 metastases) were assessed for the presence of axonal structures and scored using 4-level scales for Bielschowsky staining (0: no axonal structures, 1: minimal axonal fragments preserved, 2: decreased axonal density, 3: no axonal loss) and glial fibrillary acid protein expression (0: no glial fibrillary acid protein positivity, 1: limited expression, 2: equivalent to surrounding parenchyma, 3: increased expression). RESULTS When we compared glioblastomas and metastases, fractional anisotropy was significantly increased and orientation dispersion was decreased in glioblastomas (each P < .001), with a significant shift toward increased glial fibrillary acid protein and Bielschowsky scores. Positive associations of fractional anisotropy and negative associations of orientation dispersion with glial fibrillary acid protein and Bielschowsky scores were revealed, whereas no association between micro-fractional anisotropy with glial fibrillary acid protein and Bielschowsky scores was detected. Receiver operating characteristic curves revealed high predictive values of both fractional anisotropy (area under the curve = 0.8463) and orientation dispersion (area under the curve = 0.8398) regarding the presence of a glioblastoma. CONCLUSIONS Diffusion imaging fractional anisotropy and orientation dispersion metrics correlated with histopathologic markers of directionality and may serve as imaging biomarkers in contrast-enhancing tumor components.
Collapse
Affiliation(s)
- Urs Würtemberger
- From the Department of Neuroradiology (U.W., A.R., V.A., H.U., T.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology (D.E., M.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Program for Advanced Clinician Scientists (D.E.), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- From the Department of Neuroradiology (U.W., A.R., V.A., H.U., T.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology (A.R.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Neurophysiology (J.A.H.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Veysel Akgün
- From the Department of Neuroradiology (U.W., A.R., V.A., H.U., T.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Medical Physics (M.R., V.G.K.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery (M.R., P.C.R.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Valerij G Kiselev
- Department of Medical Physics (M.R., V.G.K.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery (J.B., M.H.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Sonja Jankovic
- Department of Radiology (S.J.), Faculty of Medicine, University Clinical Center Nis, University of Nis, Nis, Serbia
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery (M.R., P.C.R.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology (P.C.R.), Aachen, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery (J.B., M.H.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- From the Department of Neuroradiology (U.W., A.R., V.A., H.U., T.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology (D.E., M.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
- IMM-PACT Clinician Scientist Program (M.D.), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theo Demerath
- From the Department of Neuroradiology (U.W., A.R., V.A., H.U., T.D.), Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Sollmann N, Zhang H, Kloth C, Zimmer C, Wiestler B, Rosskopf J, Kreiser K, Schmitz B, Beer M, Krieg SM. Modern preoperative imaging and functional mapping in patients with intracranial glioma. ROFO-FORTSCHR RONTG 2023; 195:989-1000. [PMID: 37224867 DOI: 10.1055/a-2083-8717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Magnetic resonance imaging (MRI) in therapy-naïve intracranial glioma is paramount for neuro-oncological diagnostics, and it provides images that are helpful for surgery planning and intraoperative guidance during tumor resection, including assessment of the involvement of functionally eloquent brain structures. This study reviews emerging MRI techniques to depict structural information, diffusion characteristics, perfusion alterations, and metabolism changes for advanced neuro-oncological imaging. In addition, it reflects current methods to map brain function close to a tumor, including functional MRI and navigated transcranial magnetic stimulation with derived function-based tractography of subcortical white matter pathways. We conclude that modern preoperative MRI in neuro-oncology offers a multitude of possibilities tailored to clinical needs, and advancements in scanner technology (e. g., parallel imaging for acceleration of acquisitions) make multi-sequence protocols increasingly feasible. Specifically, advanced MRI using a multi-sequence protocol enables noninvasive, image-based tumor grading and phenotyping in patients with glioma. Furthermore, the add-on use of preoperatively acquired MRI data in combination with functional mapping and tractography facilitates risk stratification and helps to avoid perioperative functional decline by providing individual information about the spatial location of functionally eloquent tissue in relation to the tumor mass. KEY POINTS:: · Advanced preoperative MRI allows for image-based tumor grading and phenotyping in glioma.. · Multi-sequence MRI protocols nowadays make it possible to assess various tumor characteristics (incl. perfusion, diffusion, and metabolism).. · Presurgical MRI in glioma is increasingly combined with functional mapping to identify and enclose individual functional areas.. · Advancements in scanner technology (e. g., parallel imaging) facilitate increasing application of dedicated multi-sequence imaging protocols.. CITATION FORMAT: · Sollmann N, Zhang H, Kloth C et al. Modern preoperative imaging and functional mapping in patients with intracranial glioma. Fortschr Röntgenstr 2023; 195: 989 - 1000.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, United States
| | - Haosu Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Bernd Schmitz
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| |
Collapse
|
11
|
Okita Y, Takano K, Tateishi S, Hayashi M, Sakai M, Kinoshita M, Kishima H, Nakanishi K. Neurite orientation dispersion and density imaging and diffusion tensor imaging to facilitate distinction between infiltrating tumors and edemas in glioblastoma. Magn Reson Imaging 2023; 100:18-25. [PMID: 36924806 DOI: 10.1016/j.mri.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Glioblastomas are highly infiltrative tumors, and differentiating between non-enhancing tumors (NETs) and vasogenic edema (Edemas) occurring in the non-enhancing T2-weighted hyperintense area is challenging. Here, we differentiated between NETs and Edemas in glioblastomas using neurite orientation dispersion and density imaging (NODDI) and diffusion tensor imaging (DTI). MATERIALS AND METHODS Data were collected retrospectively from 21 patients with primary glioblastomas, three with metastasis, and two with meningioma as controls. MRI data included T2 weighted images and contrast enhanced T1 weighted images, NODDI, and DTI. Three neurosurgeons manually assigned volumes of interest (VOIs) to the NETs and Edemas. The DTI and NODDI-derived parameters calculated for each VOI were fractional anisotropy (FA), apparent diffusion coefficient (ADC), intracellular volume fraction (ICVF), isotropic volume fraction (ISOVF), and orientation dispersion index. RESULTS Sixteen and 14 VOIs were placed on NETs and Edemas, respectively. The ICVF, ISOVF, FA, and ADC values of NETs and Edemas differed significantly (p < 0.01). Receiver operating characteristic curve analysis revealed that using all parameters allowed for improved differentiation of NETs from Edemas (area under the curve = 0.918) from the use of NODDI parameters (0.910) or DTI parameters (0.899). Multiple logistic regression was performed with all parameters, and a predictive formula to differentiate between NETs and Edemas could be created and applied to the edematous regions of the negative control-group images; the tumor prediction degree was well below 0.5, confirming differentiation as edema. CONCLUSIONS Using NODDI and DTI may prove useful in differentiating NETs from Edemas in the non-contrast T2 hyperintensity region of glioblastomas.
Collapse
Affiliation(s)
- Yoshiko Okita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Takano
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Soichiro Tateishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Motohisa Hayashi
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Mio Sakai
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; Department of Neurosurgery, Asahikawa Medical University, Midorigaoka-higashi 2-1-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
12
|
Fioni F, Chen SJ, Lister INE, Ghalwash AA, Long MZ. Differentiation of high grade glioma and solitary brain metastases by measuring relative cerebral blood volume and fractional anisotropy: a systematic review and meta-analysis of MRI diagnostic test accuracy studies. Br J Radiol 2023; 96:20220052. [PMID: 36278795 PMCID: PMC10997014 DOI: 10.1259/bjr.20220052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aims to research the efficacy of MRI (I) for differentiating high-grade glioma (HGG) (P) with solitary brain metastasis (SBM) (C) by creating a combination of relative cerebral blood volume (rCBV) (O) and fractional anisotropy (FA) (O) in patients with intracerebral tumors. METHODS Searches were conducted on September 2021 with no publication date restriction, using an electronic search for related articles published in English, from PubMed (1994 to September 2021), Scopus (1977 to September 2021), Web of Science (1985 to September 2021), and Cochrane (1997 to September 2021). A total of 1056 studies were found, with 23 used for qualitative and quantitative data synthesis. Inclusion criteria were: patients diagnosed with HGG and SBM without age, sex, or race restriction; MRI examination of rCBV and FA; reliable histopathological diagnostic method as the gold-standard for all conditions of interest; observational and clinical studies. Newcastle-Ottawa quality assessment Scale (NOS) and Cochrane risk of bias tool (ROB) for observational and clinical trial studies were managed to appraise the quality of individual studies included. Data extraction results were managed using Mendeley and Excel, pooling data synthesis was completed using the Review Manager 5.4 software with random effect model to discriminate HGG and SBM, and divided into four subgroups. RESULTS There were 23 studies included with a total sample size of 597 HGG patients and 373 control groups/SBM. The analysis was categorized into four subgroups: (1) the subgroup with rCBV values in the central area of the tumor/intratumoral (399 HGG and 232 SBM) shows that HGG patients are not significantly different from SBM/controls group (SMD [95% CI] = -0.27 [-0.66, 0.13]), 2) the subgroup with rCBV values in the peritumoral area (452 HGG and 274 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = -1.23 [-1.45 to -1.01]), (3) the subgroup with FA values in the central area of the tumor (249 HGG and 156 SBM) shows that HGG patients are significantly higher than SBM (SMD [95% CI] = - 0.44 [-0.84,-0.04]), furthermore (4) the subgroup with FA values in the peritumoral area (261 HGG and 168 SBM) shows that the HGG patients are significantly higher than the SBM (SMD [95% CI] = -0.59 [-1.02,-0.16]). CONCLUSION Combining rCBV and FA measurements in the peritumoral region and FA in the intratumoral region increase the accuracy of MRI examination to differentiate between HGG and SBM patients effectively. Confidence in the accuracy of our results may be influenced by major interstudy heterogeneity. Whereas the I2 for the rCBV in the intratumoral subgroup was 80%, I2 for the rCBV in the peritumoral subgroup was 39%, and I2 for the FA in the intratumoral subgroup was 69%, and I2 for the FA in the peritumoral subgroup was 74%. The predefined accurate search criteria, and precise selection and evaluation of methodological quality for included studies, strengthen this studyOur study has no funder, no conflict of interest, and followed an established PROSPERO protocol (ID: CRD42021279106). ADVANCES IN KNOWLEDGE The combination of rCBV and FA measurements' results is promising in differentiating HGG and SBM.
Collapse
Affiliation(s)
- Fioni Fioni
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - Song Jia Chen
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| | - I Nyoman Ehrich Lister
- Medicine, Universitas Prima Indonesia and Royal Prima
Hospital, Medan, North Sumatera, Indoneisa
| | | | - Ma Zhan Long
- Department of Radiology, Nanjing Medical University, first
affiliated hospital (Jiangsu Provincial People’s
Hospital), Jiangsu, China
| |
Collapse
|
13
|
Würtemberger U, Rau A, Reisert M, Kellner E, Diebold M, Erny D, Reinacher PC, Hosp JA, Hohenhaus M, Urbach H, Demerath T. Differentiation of Perilesional Edema in Glioblastomas and Brain Metastases: Comparison of Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging and Diffusion Microstructure Imaging. Cancers (Basel) 2022; 15:cancers15010129. [PMID: 36612127 PMCID: PMC9817519 DOI: 10.3390/cancers15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence:
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein-Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074 Aachen, Germany
| | - Jonas A. Hosp
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
14
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
15
|
Abdeen N. Editorial for "Histogram Analysis Based on Neurite Orientation Dispersion and Density Imaging for Differentiation Between Glioblastoma Multiforme and Solitary Brain Metastasis and Comparison of the Diagnostic Performance of Two ROI Placements". J Magn Reson Imaging 2022; 57:1475-1476. [PMID: 36082991 DOI: 10.1002/jmri.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nishard Abdeen
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Qi J, Wang P, Zhao G, Gao E, Zhao K, Gao A, Bai J, Zhang H, Yang G, Zhang Y, Ma X, Cheng J. Histogram Analysis Based on Neurite Orientation Dispersion and Density MR Imaging for Differentiation Between Glioblastoma Multiforme and Solitary Brain Metastasis and Comparison of the Diagnostic Performance of Two ROI Placements. J Magn Reson Imaging 2022; 57:1464-1474. [PMID: 36066259 DOI: 10.1002/jmri.28419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preoperative differentiation of glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) contributes to guide neurosurgical decision-making. PURPOSE To explore the value of histogram analysis based on neurite orientation dispersion and density imaging (NODDI) in differentiating between GBM and SBM and comparison of the diagnostic performance of two region of interest (ROI) placements. STUDY TYPE Retrospective. POPULATION In all, 109 patients with GBM (n = 57) or SBM (n = 52) were enrolled. FIELD STRENGTH/SEQUENCE A 3.0 T scanners. T2 -dark-fluid sequence, contrast-enhanced T1 magnetization-prepared rapid gradient echo sequence, and NODDI. ASSESSMENT ROIs were placed on the peritumoral edema area (ROI1) and whole tumor area (ROI2, included the cystic, necrotic, and hemorrhagic areas). Histogram parameters of each isotropic volume fraction (ISOVF), intracellular volume fraction (ICVF), and orientation dispersion index (ODI) from NODDI images for two ROIs were calculated, respectively. STATISTICAL TESTS Mann-Whitney U test, independent t-test, chi-square test, multivariate logistic regression analysis, DeLong's test. RESULTS For the ROI1 and ROI2, the ICVFmin and ODImean obtained the highest area under curve (AUC, AUC = 0.741 and 0.750, respectively) compared to other single parameters, and the AUC of the multivariate logistic regression model was 0.851 and 0.942, respectively. DeLong's test revealed significant difference in diagnostic performance between optimal single parameter and multivariate logistic regression model within the same ROI, and the multivariate logistic regression models between two different ROIs. DATA CONCLUSION The performance of multivariate logistic regression model is superior to optimal single parameter in both ROIs based on NODDI histogram analysis to distinguish SBM from GBM, and the ROI placed on the whole tumor area exhibited better diagnostic performance. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jinbo Qi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohua Zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Eryuan Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ankang Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, Wuhan, China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Ma
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Diffusion-based microstructure models in brain tumours: Fitting in presence of a model-microstructure mismatch. Neuroimage Clin 2022; 34:102968. [PMID: 35220105 PMCID: PMC8881729 DOI: 10.1016/j.nicl.2022.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
We analyzed the performance of NODDI, SMT and DKI inside the tumoral lesion. Goodness of fit were comparable to normal tissue, for DKI and NODDI. Parameter precision was similar to normal tissues for all quantified metrics. Parameters should not be given their healthy physiological meaning in the tumour. The three models are usable as signal representations of the tumoral tissue.
Diffusion-based biophysical models have been used in several recent works to study the microenvironment of brain tumours. While the pathophysiological interpretation of the parameters of these models remains unclear, their use as signal representations may yield useful biomarkers for monitoring the treatment and the progression of this complex and heterogeneous disease. Up to now, however, no study was devoted to assessing the mathematical stability of these approaches in cancerous brain regions. To this end, we analyzed in 11 brain tumour patients the fitting results of two microstructure models (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique) and of a signal representation (Diffusion Kurtosis Imaging) to compare the reliability of their parameter estimates in the healthy brain and in the tumoral lesion. The framework of our between-tissue analysis included the computation of 1) the residual sum of squares as a goodness-of-fit measure 2) the standard deviation of the models’ derived metrics and 3) models’ sensitivity functions to analyze the suitability of the employed protocol for parameter estimation in the different microenvironments. Our results revealed no issues concerning the fitting of the models in the tumoral lesion, with similar goodness of fit and parameter precisions occurring in normal appearing and pathological tissues. Lastly, with the aim of highlight possible biomarkers, in our analysis we briefly discuss the correlation between the metrics of the three techniques, identifying groups of indices which are significantly collinear in all tissues and thus provide no additional information when jointly used in data-driven analyses.
Collapse
|
18
|
Brabec J, Durmo F, Szczepankiewicz F, Brynolfsson P, Lampinen B, Rydelius A, Knutsson L, Westin CF, Sundgren PC, Nilsson M. Separating Glioma Hyperintensities From White Matter by Diffusion-Weighted Imaging With Spherical Tensor Encoding. Front Neurosci 2022; 16:842242. [PMID: 35527815 PMCID: PMC9069143 DOI: 10.3389/fnins.2022.842242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-related hyperintensities in high b-value diffusion-weighted imaging (DWI) are radiologically important in the workup of gliomas. However, the white matter may also appear as hyperintense, which may conflate interpretation. Purpose To investigate whether DWI with spherical b-tensor encoding (STE) can be used to suppress white matter and enhance the conspicuity of glioma hyperintensities unrelated to white matter. Materials and Methods Twenty-five patients with a glioma tumor and at least one pathology-related hyperintensity on DWI underwent conventional MRI at 3 T. The DWI was performed both with linear and spherical tensor encoding (LTE-DWI and STE-DWI). The LTE-DWI here refers to the DWI obtained with conventional diffusion encoding and averaged across diffusion-encoding directions. Retrospectively, the differences in contrast between LTE-DWI and STE-DWI, obtained at a b-value of 2,000 s/mm2, were evaluated by comparing hyperintensities and contralateral normal-appearing white matter (NAWM) both visually and quantitatively in terms of the signal intensity ratio (SIR) and contrast-to-noise ratio efficiency (CNReff). Results The spherical tensor encoding DWI was more effective than LTE-DWI at suppressing signals from white matter and improved conspicuity of pathology-related hyperintensities. The median SIR improved in all cases and on average by 28%. The median (interquartile range) SIR was 1.9 (1.6 – 2.1) for STE and 1.4 (1.3 – 1.7) for LTE, with a significant difference of 0.4 (0.3 –0.5) (p < 10–4, paired U-test). In 40% of the patients, the SIR was above 2 for STE-DWI, but with LTE-DWI, the SIR was below 2 for all patients. The CNReff of STE-DWI was significantly higher than of LTE-DWI: 2.5 (2 – 3.5) vs. 2.3 (1.7 – 3.1), with a significant difference of 0.4 (−0.1 –0.6) (p < 10–3, paired U-test). The STE improved CNReff in 70% of the cases. We illustrate the benefits of STE-DWI in three patients, where STE-DWI may facilitate an improved radiological description of tumor-related hyperintensity, including one case that could have been missed out if only LTE-DWI was inspected. Conclusion The contrast mechanism of high b-value STE-DWI results in a stronger suppression of white matter than conventional LTE-DWI, and may, therefore, be more sensitive and specific for assessment of glioma tumors and DWI-hyperintensities.
Collapse
Affiliation(s)
- Jan Brabec
- Medical Radiation Physics, Lund University, Lund, Sweden
- *Correspondence: Jan Brabec,
| | - Faris Durmo
- Diagnostic Radiology, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Diagnostic Radiology, Lund University, Lund, Sweden
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patrik Brynolfsson
- Division of Medical Radiation Physics, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Björn Lampinen
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anna Rydelius
- Department of Neurology, Lund University, Lund, Sweden
| | - Linda Knutsson
- Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pia C. Sundgren
- Diagnostic Radiology, Lund University, Lund, Sweden
- Lund University Bioimaging Center, Lund University, Lund, Sweden
- Department of Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | | |
Collapse
|
19
|
Evaluation of Temozolomide Treatment for Glioblastoma Using Amide Proton Transfer Imaging and Diffusion MRI. Cancers (Basel) 2022; 14:cancers14081907. [PMID: 35454814 PMCID: PMC9031574 DOI: 10.3390/cancers14081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Glioblastoma (GBM), the most frequent and malignant histological type of glioma, is associated with a very high mortality rate. MRI is a useful method for the evaluation of tumor growth. However, there are few studies that have quantitatively evaluated the changes in disease state after TMZ treatment against GBM, and it is not fully understood how the effects of treatment are reflected in the quantitative values measured on MRI. We used the C6 glioma rat model to evaluate the tumor changes due to chemotherapy at different doses of TMZ in terms of quantitative values measured by neurite orientation dispersion and density imaging (NODDI) and amide proton transfer (APT) imaging using 7T-MRI. These methods can evaluate the microstructural changes caused by TMZ-induced tumor growth inhibition. Abstract This study aimed to evaluate tumor changes due to chemotherapy with temozolomide (TMZ) in terms of quantitative values measured by APT imaging and NODDI. We performed TMZ treatment (administered orally by gavage to the TMZ-40 mg and TMZ-60 mg groups) on 7-week-old male Wistar rats with rat glioma C6 implanted in the right brain. T2WI, APT imaging, diffusion tensor imaging (DTI), and NODDI were performed on days 7 and 14 after implantation using 7T-MRI, and the calculated quantitative values were statistically compared. Then, HE staining was performed on brain tissue at day 7 and day 14 for each group to compare the results with the MR images. TMZ treatment inhibited tumor growth and necrotic area formation. The necrotic areas observed upon hematoxylin and eosin (HE) staining were consistent with the MTR low-signal areas observed upon APT imaging. The intracellular volume fraction (ICVF) map of the NODDI could best show the microstructure of the tumor, and its value could significantly highlight the difference in treatment effects at different TMZ doses. APT imaging and NODDI can be used to detect the microstructural changes caused by TMZ-induced tumor growth inhibition. The ICVF may be useful as a parameter for determining the effect of TMZ.
Collapse
|
20
|
Lee MG, Choi Z, Lim NJ, Lim JS, Lee KW, Ko KP, Ryu BK, Kang SH, Chi SG. XAF1 directs glioma response to temozolomide through apoptotic transition of autophagy by activation of ROS-ATM-AMPK signaling. Neurooncol Adv 2022; 4:vdac013. [PMID: 35274103 PMCID: PMC8903238 DOI: 10.1093/noajnl/vdac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Abstract
Background
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human cancers. However, its role in the pathogenesis and therapeutic response of glioma is poorly characterized.
Methods
XAF1 activation by temozolomide (TMZ) and its effect on TMZ cytotoxicity were defined using luciferase reporter, flow cytometry, and immunofluorescence assays. Signaling mechanism was analyzed using genetic and pharmacologic experiments. In vivo studies were performed in mice to validate the role of XAF1 in TMZ therapy.
Results
Epigenetic alteration of XAF1 is frequent in cell lines and primary tumors and contributes to cancer cell growth. XAF1 transcription is activated by TMZ via JNK-IRF-1 signaling to promote apoptosis while it is impaired by promoter hypermethylation. In tumor cells expressing high O 6methylguanineDNA methyltransferase (MGMT), XAF1 response to TMZ is debilitated. XAF1 facilitates TMZ-mediated autophagic flux to direct an apoptotic transition of protective autophagy. Mechanistically, XAF1 is translocated into the mitochondria to stimulate reactive oxygen species (ROS) production and ataxia telangiectasia mutated (ATM)-AMPactivated protein kinase (AMPK) signaling. A mutant XAF1 lacking the zinc finger 6 domain fails to localize in the mitochondria and activate ROS-ATMAMPK signaling and autophagy-mediated apoptosis. XAF1restored xenograft tumors display a reduced growth rate and enhanced therapeutic response to TMZ, which is accompanied with activation of ATMAMPK signaling. XAF1 expression is associated with overall survival of TMZ treatment patients, particularly with low MGMT cancer.
Conclusions
This study uncovers an important role for the XAF1ATMAMPK axis as a linchpin to govern glioma response to TMZ therapy.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Zisun Choi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Na Jung Lim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji Sun Lim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Woo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Phil Ko
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Kyu Ryu
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Department of Neurosurgery, School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Shin Hyuk Kang
- Department of Neurosurgery, School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sung Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Gao E, Gao A, Kit Kung W, Shi L, Bai J, Zhao G, Cheng J. Histogram analysis based on diffusion kurtosis imaging: Differentiating glioblastoma multiforme from single brain metastasis and comparing the diagnostic performance of two region of interest placements. Eur J Radiol 2021; 147:110104. [PMID: 34972059 DOI: 10.1016/j.ejrad.2021.110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To assess the value of histogram analysis, using diffusion kurtosis imaging (DKI), in differentiating glioblastoma multiforme (GBM) from single brain metastasis (SBM) and to compare the diagnostic efficiency of different region of interest (ROI) placements. METHOD Sixty-seven patients with histologically confirmed GBM (n = 35) and SBM (n = 32) were recruited. Two ROIs-the contrast-enhanced area and whole-tumor area-were delineated across all slices. Eleven histogram parameters of fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) from both ROIs were calculated. All histogram parameter values were compared between GBM and SBM, using the Mann-Whitney U test. The accuracies of different histogram parameters were compared using the McNemar test. Receiver operating characteristic (ROC) analyses were conducted to assess the diagnostic performance. RESULTS In the contrast-enhanced area, FA10, FA25, FA75, FA90, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAskewness was significantly lower for GBM than for SBM. FA25 (0.815) had the highest area under the curve (AUC). In the whole-tumor area, FA10, FA25, FA75, FA90, FASD, FAmean, FAmedian, FAmax, MDmax, MDskewness, and MKskewness were significantly higher for GBM than for SBM. FAmedian (0.805) had the highest AUC. The accuracy of FA25 in the contrast-enhanced area was significantly higher than that of the FAmedian in the whole-tumor area. CONCLUSIONS GBM and SBM can be differentiated using the DKI-based histogram analysis. Placing the ROI on the contrast-enhanced area results in better discrimination.
Collapse
Affiliation(s)
- Eryuan Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wing Kit Kung
- Brain Now Medical Technology Limited, Hong Kong SAR, Hong Kong, 999077, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, 999077, China
| | - Jie Bai
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guohua Zhao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Minosse S, Picchi E, Giuliano FD, di Cio F, Pistolese CA, Sarmati L, Teti E, Andreoni M, Floris R, Guerrisi M, Garaci F, Toschi N. Compartmental models for diffusion weighted MRI reveal widespread brain changes in HIV-infected patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3834-3837. [PMID: 34892070 DOI: 10.1109/embc46164.2021.9629510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to explore changes in the brain of subjects with human immunodeficiency virus (HIV) infection. However, DTI notoriously suffers from low specificity. Neurite orientation dispersion and density imaging (NODDI) is a compartmental model able to provide specific microstructural information with additional sensitivity/specificity. In this study we use both the NODDI and the DTI models to evaluate microstructural differences between 35 HIV-positive patients and 20 healthy controls. Diffusion-weighted imaging was acquired using three b-values (0, 1000 and 2500 s/mm2). Both DTI and NODDI models were fitted to the data, obtaining estimates for fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), neurite density index (NDI) and orientation dispersion index (ODI), after which we performed group comparisons using Tract-based spatial statistics (TBSS). While significant group effects were found in in FA, MD, RD, AD and NDI, NDI analysis uncovered a much wider involvement of brain tissue in HIV infection as compared to DTI. In region-of interest (ROI)-based analysis, NDI estimates from the right corticospinal tract produced excellent performance in discriminating the two groups (AUC = 0.974, sensitivity = 90%; specificity =97%).
Collapse
|
23
|
Chong ST, Liu X, Kao HW, Lin CYE, Hsu CCH, Kung YC, Kuo KT, Huang CC, Lo CYZ, Li Y, Zhao G, Lin CP. Exploring Peritumoral Neural Tracts by Using Neurite Orientation Dispersion and Density Imaging. Front Neurosci 2021; 15:702353. [PMID: 34646116 PMCID: PMC8502884 DOI: 10.3389/fnins.2021.702353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Diffusion Tensor Imaging (DTI) tractography has been widely used in brain tumor surgery to ensure thorough resection and minimize functional damage. However, due to enhanced anisotropic uncertainty in the area with peritumoral edema, diffusion tractography is generally not practicable leading to high false-negative results in neural tracking. In this study, we evaluated the usefulness of the neurite orientation dispersion and density imaging (NODDI) derived tractography for investigating structural heterogeneity of the brain in patients with brain tumor. A total of 24 patients with brain tumors, characterized by peritumoral edema, and 10 healthy counterparts were recruited from 2014 to 2021. All participants underwent magnetic resonance imaging. Moreover, we used the images obtained from the healthy participants for calibrating the orientation dispersion threshold for NODDI-derived corticospinal tract (CST) reconstruction. Compared to DTI, NODDI-derived tractography has a great potential to improve the reconstruction of fiber tracking through regions of vasogenic edema. The regions with edematous CST in NODDI-derived tractography demonstrated a significant decrease in the intracellular volume fraction (VFic, p < 0.000) and an increase in the isotropic volume fraction (VFiso, p < 0.014). Notably, the percentage of the involved volume of the concealed CST and lesion-to-tract distance could reflect the motor function of the patients. After the tumor resection, four patients with 1–5 years follow-up were showed subsidence of the vasogenic edema and normal CST on DTI tractography. NODDI-derived tractography revealed tracts within the edematous area and could assist neurosurgeons to locate the neural tracts that are otherwise not visualized by conventional DTI tractography.
Collapse
Affiliation(s)
- Shin Tai Chong
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Xinrui Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Radiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Chih-Chin Heather Hsu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chia Kung
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Tsen Kuo
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chu-Chung Huang
- School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
24
|
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin Ultrasound CT MR 2021; 42:490-506. [PMID: 34537117 DOI: 10.1053/j.sult.2021.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain "in vivo", and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications.
Collapse
Affiliation(s)
- Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain.
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Center for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; E-health Center, Universitat Oberta de Catalunya. Barcelona. Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| |
Collapse
|
25
|
Abstract
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.
Collapse
|
26
|
Differentiating Glioblastomas from Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities. Cancers (Basel) 2021; 13:cancers13122960. [PMID: 34199151 PMCID: PMC8231515 DOI: 10.3390/cancers13122960] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiating between glioblastomas and solitary brain metastases proves to be a challenging diagnosis for neuroradiologists, as both present with imaging patterns consisting of peritumoral hyperintensities with similar intratumoral texture on traditional magnetic resonance imaging sequences. Early diagnosis is paramount, as each pathology has completely different methods of clinical assessment. In the past decade, recent developments in advanced imaging modalities enabled providers to acquire a more accurate diagnosis earlier in the patient's clinical assessment, thus optimizing clinical outcome. Dynamic susceptibility contrast has been optimized for detecting relative cerebral blood flow and relative cerebral blood volume. Diffusion tensor imaging can be used to detect changes in mean diffusivity. Neurite orientation dispersion and density imaging is an innovative modality detecting changes in intracellular volume fraction, isotropic volume fraction, and extracellular volume fraction. Magnetic resonance spectroscopy is able to assist by providing a metabolic descriptor while detecting variable ratios of choline/N-acetylaspartate, choline/creatine, and N-acetylaspartate/creatine. Finally, radiomics and machine learning algorithms have been devised to assist in improving diagnostic accuracy while often utilizing more than one advanced imaging protocol per patient. In this review, we provide an update on all the current evidence regarding the identification and differentiation of glioblastomas from solitary brain metastases.
Collapse
|
27
|
Priya S, Liu Y, Ward C, Le NH, Soni N, Pillenahalli Maheshwarappa R, Monga V, Zhang H, Sonka M, Bathla G. Machine learning based differentiation of glioblastoma from brain metastasis using MRI derived radiomics. Sci Rep 2021; 11:10478. [PMID: 34006893 PMCID: PMC8131619 DOI: 10.1038/s41598-021-90032-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Few studies have addressed radiomics based differentiation of Glioblastoma (GBM) and intracranial metastatic disease (IMD). However, the effect of different tumor masks, comparison of single versus multiparametric MRI (mp-MRI) or select combination of sequences remains undefined. We cross-compared multiple radiomics based machine learning (ML) models using mp-MRI to determine optimized configurations. Our retrospective study included 60 GBM and 60 IMD patients. Forty-five combinations of ML models and feature reduction strategies were assessed for features extracted from whole tumor and edema masks using mp-MRI [T1W, T2W, T1-contrast enhanced (T1-CE), ADC, FLAIR], individual MRI sequences and combined T1-CE and FLAIR sequences. Model performance was assessed using receiver operating characteristic curve. For mp-MRI, the best model was LASSO model fit using full feature set (AUC 0.953). FLAIR was the best individual sequence (LASSO-full feature set, AUC 0.951). For combined T1-CE/FLAIR sequence, adaBoost-full feature set was the best performer (AUC 0.951). No significant difference was seen between top models across all scenarios, including models using FLAIR only, mp-MRI and combined T1-CE/FLAIR sequence. Top features were extracted from both the whole tumor and edema masks. Shape sphericity is an important discriminating feature.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| | - Yanan Liu
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Nam H Le
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Honghai Zhang
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Milan Sonka
- College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| |
Collapse
|
28
|
Park M, Kim JW, Ahn SJ, Suh SH. Evaluation of brain tumors using NODDI technique: A promising tool. J Neuroradiol 2021; 47:185-186. [PMID: 32359664 DOI: 10.1016/j.neurad.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea.
| | - Jin Woo Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| | - Sun Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Eonjuro 211, Gangnam-gu, Seoul, South Korea
| |
Collapse
|
29
|
Cepeda S, García-García S, Arrese I, Fernández-Pérez G, Velasco-Casares M, Fajardo-Puentes M, Zamora T, Sarabia R. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Front Oncol 2021; 10:590756. [PMID: 33604286 PMCID: PMC7884775 DOI: 10.3389/fonc.2020.590756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background The differential diagnosis of glioblastomas (GBM) from solitary brain metastases (SBM) is essential because the surgical strategy varies according to the histopathological diagnosis. Intraoperative ultrasound elastography (IOUS-E) is a relatively novel technique implemented in the surgical management of brain tumors that provides additional information about the elasticity of tissues. This study compares the discriminative capacity of intraoperative ultrasound B-mode and strain elastography to differentiate GBM from SBM. Methods We performed a retrospective analysis of patients who underwent craniotomy between March 2018 to June 2020 with glioblastoma (GBM) and solitary brain metastases (SBM) diagnoses. Cases with an intraoperative ultrasound study were included. Images were acquired before dural opening, first in B-mode, and then using the strain elastography module. After image pre-processing, an analysis based on deep learning was conducted using the open-source software Orange. We have trained an existing neural network to classify tumors into GBM and SBM via the transfer learning method using Inception V3. Then, logistic regression (LR) with LASSO (least absolute shrinkage and selection operator) regularization, support vector machine (SVM), random forest (RF), neural network (NN), and k-nearest neighbor (kNN) were used as classification algorithms. After the models’ training, ten-fold stratified cross-validation was performed. The models were evaluated using the area under the curve (AUC), classification accuracy, and precision. Results A total of 36 patients were included in the analysis, 26 GBM and 10 SBM. Models were built using a total of 812 ultrasound images, 435 of B-mode, 265 (60.92%) corresponded to GBM and 170 (39.8%) to metastases. In addition, 377 elastograms, 232 (61.54%) GBM and 145 (38.46%) metastases were analyzed. For B-mode, AUC and accuracy values of the classification algorithms ranged from 0.790 to 0.943 and from 72 to 89%, respectively. For elastography, AUC and accuracy values ranged from 0.847 to 0.985 and from 79% to 95%, respectively. Conclusion Automated processing of ultrasound images through deep learning can generate high-precision classification algorithms that differentiate glioblastomas from metastases using intraoperative ultrasound. The best performance regarding AUC was achieved by the elastography-based model supporting the additional diagnostic value that this technique provides.
Collapse
Affiliation(s)
- Santiago Cepeda
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| | | | - Ignacio Arrese
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| | | | | | | | - Tomás Zamora
- Pathology Department, University Hospital Río Hortega, Valladolid, Spain
| | - Rosario Sarabia
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| |
Collapse
|
30
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
31
|
Pieri V, Sanvito F, Riva M, Petrini A, Rancoita PMV, Cirillo S, Iadanza A, Bello L, Castellano A, Falini A. Along-tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors. Hum Brain Mapp 2020; 42:1268-1286. [PMID: 33274823 PMCID: PMC7927309 DOI: 10.1002/hbm.25291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI‐ and NODDI‐derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along‐tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI‐derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI‐derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions.
Collapse
Affiliation(s)
- Valentina Pieri
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Sanvito
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Alessandro Petrini
- Department of Computer Science, Università degli Studi di Milano, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Iadanza
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Andica C, Kamagata K, Hayashi T, Hagiwara A, Uchida W, Saito Y, Kamiya K, Fujita S, Akashi T, Wada A, Abe M, Kusahara H, Hori M, Aoki S. Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics. Neuroradiology 2019; 62:483-494. [PMID: 31883043 PMCID: PMC7093343 DOI: 10.1007/s00234-019-02350-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
Purpose The reproducibility of neurite orientation dispersion and density imaging (NODDI) metrics in the human brain has not been explored across different magnetic resonance (MR) scanners from different vendors. This study aimed to evaluate the scan–rescan and inter-vendor reproducibility of NODDI metrics in white and gray matter of healthy subjects using two 3-T MR scanners from two vendors. Methods Ten healthy subjects (7 males; mean age 30 ± 7 years, range 23–37 years) were included in the study. Whole-brain diffusion-weighted imaging was performed with b-values of 1000 and 2000 s/mm2 using two 3-T MR scanners from two different vendors. Automatic extraction of the region of interest was performed to obtain NODDI metrics for whole and localized areas of white and gray matter. The coefficient of variation (CoV) and intraclass correlation coefficient (ICC) were calculated to assess the scan–rescan and inter-vendor reproducibilities of NODDI metrics. Results The scan–rescan and inter-vendor reproducibility of NODDI metrics (intracellular volume fraction and orientation dispersion index) were comparable with those of diffusion tensor imaging (DTI) metrics. However, the inter-vendor reproducibilities of NODDI (CoV = 2.3–14%) were lower than the scan–rescan reproducibility (CoV: scanner A = 0.8–3.8%; scanner B = 0.8–2.6%). Compared with the finding of DTI metrics, the reproducibility of NODDI metrics was lower in white matter and higher in gray matter. Conclusion The lower inter-vendor reproducibility of NODDI in some brain regions indicates that data acquired from different MRI scanners should be carefully interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Abe
- Canon Medical Systems Corporation, Kanagawa, Japan
| | | | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Schilling KG, By S, Feiler HR, Box BA, O'Grady KP, Witt A, Landman BA, Smith SA. Diffusion MRI microstructural models in the cervical spinal cord - Application, normative values, and correlations with histological analysis. Neuroimage 2019; 201:116026. [PMID: 31326569 DOI: 10.1016/j.neuroimage.2019.116026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in vivo on clinical MRI scanners. However, application, characterization, and validation of these models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion "signal" model (diffusion tensor imaging, DTI) and two commonly implemented "microstructural" models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and descending pathways, as well as various gray matter regions. We then aim to validate the sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices of the tissue microenvironment provided by a histological template. We find that DTI indices are sensitive to a number of microstructural features, but lack specificity. The microstructural models also show sensitivity to a number of microstructure features; however, they do not capture the specific microstructural features explicitly modelled. Although often regarded as a simple extension of the brain in the central nervous system, it may be necessary to re-envision, or specifically adapt, diffusion microstructural models for application to the human spinal cord with clinically feasible acquisitions - specifically, adjusting, adapting, and re-validating the modeling as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter estimation (for example challenges of acquisition, artifacts, and processing).
Collapse
Affiliation(s)
- Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha By
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Haley R Feiler
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey A Box
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Atlee Witt
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|