1
|
Delfan N, Abbasi F, Emamzadeh N, Bahri A, Parvaresh Rizi M, Motamedi A, Moshiri B, Iranmehr A. Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions. J Clin Neurosci 2025; 136:111243. [PMID: 40306254 DOI: 10.1016/j.jocn.2025.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/16/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Cerebral aneurysms pose a significant risk to patient safety, particularly when ruptured, emphasizing the need for early detection and accurate prediction. Traditional diagnostic methods, reliant on clinician-based evaluations, face challenges in sensitivity and consistency, prompting the exploration of deep learning (DL) systems for improved performance. METHODS This systematic review and meta-analysis assessed the performance of DL models in detecting and predicting intracranial aneurysms compared to clinician-based evaluations. Imaging modalities included CT angiography (CTA), digital subtraction angiography (DSA), and time-of-flight MR angiography (TOF-MRA). Data on lesion-wise sensitivity, specificity, and the impact of DL assistance on clinician performance were analyzed. Subgroup analyses evaluated DL sensitivity by aneurysm size and location, and interrater agreement was measured using Fleiss' κ. RESULTS DL systems achieved an overall lesion-wise sensitivity of 90 % and specificity of 94 %, outperforming human diagnostics. Clinician specificity improved significantly with DL assistance, increasing from 83 % to 85 % in the patient-wise scenario and from 93 % to 95 % in the lesion-wise scenario. Similarly, clinician sensitivity also showed notable improvement with DL assistance, rising from 82 % to 96 % in the patient-wise scenario and from 82 % to 88 % in the lesion-wise scenario. Subgroup analysis showed DL sensitivity varied with aneurysm size and location, reaching 100 % for aneurysms larger than 10 mm. Additionally, DL assistance improved interrater agreement among clinicians, with Fleiss' κ increasing from 0.668 to 0.862. CONCLUSIONS DL models demonstrate transformative potential in managing cerebral aneurysms by enhancing diagnostic accuracy, reducing missed cases, and supporting clinical decision-making. However, further validation in diverse clinical settings and seamless integration into standard workflows are necessary to fully realize the benefits of DL-driven diagnostics.
Collapse
Affiliation(s)
- Niloufar Delfan
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Neuraitex Research Center, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Abbasi
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Negar Emamzadeh
- Doctor of Medicine (MD), Iran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Bahri
- Student Research Committee, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mansour Parvaresh Rizi
- Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Motamedi
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Electrical and Computer Engineering University of Waterloo, Waterloo, Canada.
| | - Arad Iranmehr
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran; Gammaknife Center, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Indrakanti AK, Wasserthal J, Segeroth M, Yang S, Nicoli AP, Schulze-Zachau V, Lieb J, Cyriac J, Bach M, Psychogios M, Mutke MA. Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025. [DOI: https:/doi.org/10.1007/s10278-025-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/17/2025]
Abstract
Abstract
The aim of this study was to develop an open-source nnU-Net-based AI model for combined detection and segmentation of unruptured intracranial aneurysms (UICA) in 3D TOF-MRI and compare models trained on datasets with aneurysm-like differential diagnoses. This retrospective study (2020–2023) included 385 anonymized 3D TOF-MRI images from 345 patients (mean age 59 years, 60% female) at multiple centers plus 113 subjects from the ADAM challenge. Images featured untreated or possible UICA and differential diagnoses. Four distinct training datasets were created, and the nnU-Net framework was used for model development. Performance was assessed on a separate test set using sensitivity and false positive (FP)/case rate for detection and DICE score and NSD (normalized surface distance, 0.5 mm threshold) for segmentation. Segmentation performance on the test set was also compared to a second human reader. The four models achieved overall sensitivity between 82 and 85% and an FP/case rate of 0.20 to 0.31, with no significant differences (p = 0.90 and p = 0.16) between them. The primary model showed 85% sensitivity and 0.23 FP/case rate, outperforming the ADAM-challenge winner (61%) and a nnU-Net trained on ADAM data (51%) in sensitivity (p < 0.05). Mean DICE (0.73) and NSD (0.84 for 0.5 mm threshold) for correctly detected UICA did not significantly differ from human reader performance. Our open-source, nnU-Net-based AI model (available at https://zenodo.org/records/13386859) demonstrates high sensitivity, low FP rates, and consistent segmentation accuracy for UICA detection and segmentation in 3D TOF-MRI, suggesting its potential to improve clinical diagnosis and monitoring of UICA.
Collapse
|
3
|
Indrakanti AK, Wasserthal J, Segeroth M, Yang S, Nicoli AP, Schulze-Zachau V, Lieb J, Cyriac J, Bach M, Psychogios M, Mutke MA. Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01533-3. [PMID: 40355691 DOI: 10.1007/s10278-025-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The aim of this study was to develop an open-source nnU-Net-based AI model for combined detection and segmentation of unruptured intracranial aneurysms (UICA) in 3D TOF-MRI and compare models trained on datasets with aneurysm-like differential diagnoses. This retrospective study (2020-2023) included 385 anonymized 3D TOF-MRI images from 345 patients (mean age 59 years, 60% female) at multiple centers plus 113 subjects from the ADAM challenge. Images featured untreated or possible UICA and differential diagnoses. Four distinct training datasets were created, and the nnU-Net framework was used for model development. Performance was assessed on a separate test set using sensitivity and false positive (FP)/case rate for detection and DICE score and NSD (normalized surface distance, 0.5 mm threshold) for segmentation. Segmentation performance on the test set was also compared to a second human reader. The four models achieved overall sensitivity between 82 and 85% and an FP/case rate of 0.20 to 0.31, with no significant differences (p = 0.90 and p = 0.16) between them. The primary model showed 85% sensitivity and 0.23 FP/case rate, outperforming the ADAM-challenge winner (61%) and a nnU-Net trained on ADAM data (51%) in sensitivity (p < 0.05). Mean DICE (0.73) and NSD (0.84 for 0.5 mm threshold) for correctly detected UICA did not significantly differ from human reader performance. Our open-source, nnU-Net-based AI model (available at https://zenodo.org/records/13386859 ) demonstrates high sensitivity, low FP rates, and consistent segmentation accuracy for UICA detection and segmentation in 3D TOF-MRI, suggesting its potential to improve clinical diagnosis and monitoring of UICA.
Collapse
Affiliation(s)
- Ashraya Kumar Indrakanti
- Department of Diagnostic and Interventional Neuroradiology, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Jakob Wasserthal
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Martin Segeroth
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Shan Yang
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrew Phillip Nicoli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Victor Schulze-Zachau
- Department of Diagnostic and Interventional Neuroradiology, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Johanna Lieb
- Department of Diagnostic and Interventional Neuroradiology, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Joshy Cyriac
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Michael Bach
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Marios Psychogios
- Department of Diagnostic and Interventional Neuroradiology, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Matthias Anthony Mutke
- Department of Diagnostic and Interventional Neuroradiology, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
4
|
Hsu WC, Meuschke M, Frangi AF, Preim B, Lawonn K. A survey of intracranial aneurysm detection and segmentation. Med Image Anal 2025; 101:103493. [PMID: 39970529 DOI: 10.1016/j.media.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
Intracranial aneurysms (IAs) are a critical public health concern: they are asymptomatic and can lead to fatal subarachnoid hemorrhage in case of rupture. Neuroradiologists rely on advanced imaging techniques to identify aneurysms in a patient and consider the characteristics of IAs along with several other patient-related factors for rupture risk assessment and treatment decision-making. The process of diagnostic image reading is time-intensive and prone to inter- and intra-individual variations, so researchers have proposed many computer-aided diagnosis (CAD) systems for aneurysm detection and segmentation. This paper provides a comprehensive literature survey of semi-automated and automated approaches for IA detection and segmentation and proposes a taxonomy to classify the approaches. We also discuss the current issues and give some insight into the future direction of CAD systems for IA detection and segmentation.
Collapse
Affiliation(s)
- Wei-Chan Hsu
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, Ernst-Abbe-Platz 2, Jena, 07743, Thuringia, Germany.
| | - Monique Meuschke
- Otto von Guericke University Magdeburg, Department of Simulation and Graphics, Universitätsplatz 2, Magdeburg, 39106, Saxony-Anhalt, Germany
| | - Alejandro F Frangi
- University of Manchester, Christabel Pankhurst Institute, Schools of Engineering and Health Sciences, Oxford Rd, Manchester, M13 9PL, Greater Manchester, United Kingdom
| | - Bernhard Preim
- Otto von Guericke University Magdeburg, Department of Simulation and Graphics, Universitätsplatz 2, Magdeburg, 39106, Saxony-Anhalt, Germany
| | - Kai Lawonn
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, Ernst-Abbe-Platz 2, Jena, 07743, Thuringia, Germany
| |
Collapse
|
5
|
Mata-Castillo M, Hernández-Villegas A, Gordillo-Castillo N, Díaz-Román J. Systematic review of artificial intelligence methods for detection and segmentation of unruptured intracranial aneurysms using medical imaging. Med Biol Eng Comput 2025:10.1007/s11517-025-03345-7. [PMID: 40095414 DOI: 10.1007/s11517-025-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.
Collapse
Affiliation(s)
- Mario Mata-Castillo
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - Andrea Hernández-Villegas
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - Nelly Gordillo-Castillo
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - José Díaz-Román
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México.
| |
Collapse
|
6
|
Bernecker L, Mathiesen EB, Ingebrigtsen T, Isaksen J, Johnsen LH, Vangberg TR. Patch-Wise Deep Learning Method for Intracranial Stenosis and Aneurysm Detection-the Tromsø Study. Neuroinformatics 2025; 23:8. [PMID: 39812766 PMCID: PMC11735523 DOI: 10.1007/s12021-024-09697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal. Early detection is crucial for effective intervention. In this study, we introduced a method that combines classical computer vision techniques with deep learning to detect intracranial aneurysms and ICAS in time-of-flight magnetic resonance angiography images. The process began with skull-stripping, followed by an affine transformation to align the images to a common atlas space. We then focused on the region of interest, including the circle of Willis, by cropping the relevant area. A segmentation algorithm was used to isolate the arteries, after which a patch-wise residual neural network was applied across the image. A voting mechanism was then employed to identify the presence of atrophies. Our method achieved accuracies of 76.5% for aneurysms and 82.4% for ICAS. Notably, when occlusions were not considered, the accuracy for ICAS detection improved to 85.7%. While the algorithm performed well for localized pathological findings, it was less effective at detecting occlusions, which involved long-range dependencies in the MRIs. This limitation was due to the architectural design of the patch-wise deep learning approach. Regardless, this can, in the future, be mitigated in a multi-scale patch-wise algorithm.
Collapse
Affiliation(s)
- Luca Bernecker
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- PET Imaging Center, University Hospital North Norway, Tromsø, Norway
| | - Ellisiv B Mathiesen
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Neurology, University Hospital North Norway, Tromsø, Norway
| | - Tor Ingebrigtsen
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Neurosurgery, Ophthalmology, and Otorhinolaryngology, University Hospital of North Norway, Tromsø, Norway
| | - Jørgen Isaksen
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Neurosurgery, Ophthalmology, and Otorhinolaryngology, University Hospital of North Norway, Tromsø, Norway
| | - Liv-Hege Johnsen
- Department of Radiology, University Hospital North Norway, Tromsø, Norway
| | - Torgil Riise Vangberg
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
- PET Imaging Center, University Hospital North Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Chen Q, Zhang C, Peng T, Pan Y, Liu J. A medical disease assisted diagnosis method based on lightweight fuzzy SZGWO-ELM neural network model. Sci Rep 2024; 14:27568. [PMID: 39528769 PMCID: PMC11555419 DOI: 10.1038/s41598-024-79426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The application of neural network model in intelligent diagnosis usually encounters challenges such as continuous adjustment of network parameters and significant cost in training the network facing numerous complex physiological data. To address this challenge, this paper introduces a fuzzy SZGWO-ELM neural network model for medical disease aid diagnosis with fuzzy membership function and ELM network to refine the improved Gray Wolf optimization algorithm. Firstly, the Z-type membership function is introduced as the inertia weight to get a balance for the grey wolf in seeking the optimal solution globally and locally and ensuring fast convergence. Secondly, the S-type membership function is utilized as the adaptive weight to flexibly adjust the grey wolf search step size to facilitate a quick approximation of the optimal solution. Finally, the improved Gray Wolf optimization algorithm is used to optimize the parameters of the ELM neural network model, termed as SZGWO-ELM. This method can eliminate the need for extensive network parameter adjustments and quickly locate the optimal solution to the problem using a lightweight neural network. The performance of the SZGWO is assessed by using metrics like convergence, mean, and standard deviation. Multiple experiments reveal that this method shows superior performance. Furthermore, five publicly accessible medical disease datasets from UCI were conducted to evaluate the performance of SZGWO-ELM network model comparing with different classify model, and the results in terms of precision, sensitivity, specificity and accuracy can achieve 99.52%, 94.14%, 99.26% and 96.08%, respectively, which illustrate that the proposed SZGWO-ELM neural network significantly enhance the model's accuracy, providing better support for doctors in disease diagnosis.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Automation, Moutai Institute, Renhuai, Guizhou, China.
| | - Chenglong Zhang
- Department of Automation, Moutai Institute, Renhuai, Guizhou, China
| | - Tianhao Peng
- Department of Automation, Moutai Institute, Renhuai, Guizhou, China
| | - Youshun Pan
- Department of Automation, Moutai Institute, Renhuai, Guizhou, China
| | - Jie Liu
- Department of Automation, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
8
|
Shen Y, Zhu C, Chu B, Song J, Geng Y, Li J, Liu B, Wu X. Evaluation of the clinical application value of artificial intelligence in diagnosing head and neck aneurysms. BMC Med Imaging 2024; 24:261. [PMID: 39354383 PMCID: PMC11446065 DOI: 10.1186/s12880-024-01436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE To evaluate the performance of a semi-automated artificial intelligence (AI) software program (CerebralDoc® system) in aneurysm detection and morphological measurement. METHODS In this study, 354 cases of computed tomographic angiography (CTA) were retrospectively collected in our hospital. Among them, 280 cases were diagnosed with aneurysms by either digital subtraction angiography (DSA) and CTA (DSA group, n = 102), or CTA-only (non-DSA group, n = 178). The presence or absence of aneurysms, as well as their location and related morphological features determined by AI were evaluated using DSA and radiologist findings. Besides, post-processing image quality from AI and radiologists were also rated and compared. RESULTS In the DSA group, AI achieved a sensitivity of 88.24% and an accuracy of 81.97%, whereas radiologists achieved a sensitivity of 95.10% and an accuracy of 84.43%, using DSA results as the gold standard. The AI in the non-DSA group achieved 81.46% sensitivity and 76.29% accuracy, as per the radiologists' findings. The comparison of position consistency results showed better performance under loose criteria than strict criteria. In terms of morphological characteristics, both the DSA and the non-DSA groups agreed well with the diagnostic results for neck width and maximum diameter, demonstrating excellent ICC reliability exceeding 0.80. The AI-generated images exhibited superior quality compared to the standard software for post-processing, while also demonstrating a significantly reduced processing time. CONCLUSIONS The AI-based aneurysm detection rate demonstrates a commendable performance, while the extracted morphological parameters exhibit a remarkable consistency with those assessed by radiologists, thereby showcasing significant potential for clinical application.
Collapse
Affiliation(s)
- Yi Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Chao Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241000, China
| | - Bingqian Chu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Jian Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China
| | - Yayuan Geng
- Shukun (Beijing) Network Technology Co, Ltd, Jinhui Building, Qiyang Road, Beijing, 100102, China
| | - Jianying Li
- CT Research Center, GE Healthcare China, Shanghai, 210000, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China.
| | - Xingwang Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
9
|
Orouskhani M, Firoozeh N, Wang H, Wang Y, Shi H, Li W, Sun B, Zhang J, Li X, Zhao H, Mossa-Basha M, Hwang JN, Zhu C. Morphology and Texture-Guided Deep Neural Network for Intracranial Aneurysm Segmentation in 3D TOF-MRA. Neuroinformatics 2024; 22:731-744. [PMID: 39259472 DOI: 10.1007/s12021-024-09683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
This study concentrates on the segmentation of intracranial aneurysms, a pivotal aspect of diagnosis and treatment planning. We aim to overcome the inherent instance imbalance and morphological variability by introducing a novel morphology and texture loss reweighting approach. Our innovative method involves the incorporation of tailored weights within the loss function of deep neural networks. Specifically designed to account for aneurysm size, shape, and texture, this approach strategically guides the model to focus on capturing discriminative information from imbalanced features. The study conducted extensive experimentation utilizing ADAM and RENJI TOF-MRA datasets to validate the proposed approach. The results of our experimentation demonstrate the remarkable effectiveness of the introduced methodology in improving aneurysm segmentation accuracy. By dynamically adapting to the variances present in aneurysm features, our model showcases promising outcomes for accurate diagnostic insights. The nuanced consideration of morphological and textural nuances within the loss function proves instrumental in overcoming the challenge posed by instance imbalance. In conclusion, our study presents a nuanced solution to the intricate challenge of intracranial aneurysm segmentation. The proposed morphology and texture loss reweighting approach, with its tailored weights and dynamic adaptability, proves to be instrumental in enhancing segmentation precision. The promising outcomes from our experimentation suggest the potential for accurate diagnostic insights and informed treatment strategies, marking a significant advancement in this critical domain of medical imaging.
Collapse
Affiliation(s)
| | - Negar Firoozeh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Huayu Wang
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hanrui Shi
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Weijing Li
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Beibei Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilin Zhao
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jenq-Neng Hwang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Harborview Medical Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Adamchic I, Kantelhardt SR, Wagner HJ, Burbelko M. Artificial intelligence can help detecting incidental intracranial aneurysm on routine brain MRI using TOF MRA data sets and improve the time required for analysis of these images. Neuroradiology 2024:10.1007/s00234-024-03460-6. [PMID: 39230716 DOI: 10.1007/s00234-024-03460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE The aim of our study was to assess the diagnostic performance of commercially available AI software for intracranial aneurysm detection and to determine if the AI system enhances the radiologist's accuracy in identifying aneurysms and reduces image analysis time. METHODS TOF-MRA clinical brain examinations were analyzed using commercially available software and by an consultant neuroradiologist for the presence of intracranial aneurysms. The results were compared with the reference standard, to measure the sensitivity and specificity of the software and the consultant neuroradiologist. Furthermore, we examined the time required for the neuroradiologist to analyze the TOF-MRA image set, both with and without use of the AI software. RESULTS In 500 TOF-MRI brain studies, 106 aneurysms were detected in 85 examinations by combining AI software with neuroradiologist readings. The neuroradiologist identified 98 aneurysms (92.5% sensitivity), while AI detected 77 aneurysms (72.6% sensitivity). Specificity and sensitivity were calculated from the combined effort as reference. Combining AI and neuroradiologist readings significantly improves detection reliability. Additionally, AI integration reduced TOF-MRA analysis time by 19 s (23% reduction). CONCLUSIONS Our findings indicate that the AI-based software can support neuroradiologists in interpreting brain TOF-MRA. A combined reading of the AI-based software and the neuroradiologist demonstrated higher reliability in identifying intracranial aneurysms as compared to reading by either neuroradiologist or software, thus improving diagnostic accuracy of the neuroradiologist. Simultaneously, reading time for the neuroradiologist was reduced by approximately one quarter.
Collapse
Affiliation(s)
- Ilya Adamchic
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany.
| | - Sven R Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Hans-Joachim Wagner
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Michael Burbelko
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
- Department of Radiology, Philipps University of Marburg, 35043, Baldingerstraße, Marburg, Germany
| |
Collapse
|
11
|
Vach M, Wolf L, Weiss D, Ivan VL, Hofmann BB, Himmelspach L, Caspers J, Rubbert C. Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms. Sci Rep 2024; 14:18749. [PMID: 39138338 PMCID: PMC11322557 DOI: 10.1038/s41598-024-68805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to (1) replicate a deep-learning-based model for cerebral aneurysm segmentation in TOF-MRAs, (2) improve the approach by testing various fully automatic pre-processing pipelines, and (3) rigorously validate the model's transferability on independent, external test-datasets. A convolutional neural network was trained on 235 TOF-MRAs acquired on local scanners from a single vendor to segment intracranial aneurysms. Different pre-processing pipelines including bias field correction, resampling, cropping and intensity-normalization were compared regarding their effect on model performance. The models were tested on independent, external same-vendor and other-vendor test-datasets, each comprised of 70 TOF-MRAs, including patients with and without aneurysms. The best-performing model achieved excellent results on the external same-vendor test-dataset, surpassing the results of the previous publication with an improved sensitivity (0.97 vs. ~ 0.86), a higher Dice score coefficient (DSC, 0.60 ± 0.25 vs. 0.53 ± 0.31), and an improved false-positive rate (0.87 ± 1.35 vs. ~ 2.7 FPs/case). The model further showed excellent performance in the external other-vendor test-datasets (DSC 0.65 ± 0.26; sensitivity 0.92, 0.96 ± 2.38 FPs/case). Specificity was 0.38 and 0.53, respectively. Raising the voxel-size from 0.5 × 0.5×0.5 mm to 1 × 1×1 mm reduced the false-positive rate seven-fold. This study successfully replicated core principles of a previous approach for detecting and segmenting cerebral aneurysms in TOF-MRAs with a robust, fully automatable pre-processing pipeline. The model demonstrated robust transferability on two independent external datasets using TOF-MRAs from the same scanner vendor as the training dataset and from other vendors. These findings are very encouraging regarding the clinical application of such an approach.
Collapse
Affiliation(s)
- Marius Vach
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Luisa Wolf
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Vivien Lorena Ivan
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Björn B Hofmann
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ludmila Himmelspach
- Heine Center for Artificial Intelligence and Data Science (HeiCAD), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Zhou Z, Jin Y, Ye H, Zhang X, Liu J, Zhang W. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging 2024; 24:164. [PMID: 38956538 PMCID: PMC11218239 DOI: 10.1186/s12880-024-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threatening complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, like CTA or MRA, spotting nuances possibly overlooked by humans. Early detection facilitates timely interventions and improved outcomes. Moreover, AI algorithms offer quantitative data on aneurysm attributes, aiding in long-term monitoring and assessing rupture risks. METHODS We screened four databases (PubMed, Web of Science, IEEE and Scopus) for studies using artificial intelligence algorithms to identify IA. Based on algorithmic methodologies, we categorized them into classification, segmentation, detection and combined, and then their merits and shortcomings are compared. Subsequently, we elucidate potential challenges that contemporary algorithms might encounter within real-world clinical diagnostic contexts. Then we outline prospective research trajectories and underscore key concerns in this evolving field. RESULTS Forty-seven studies of IA recognition based on AI were included based on search and screening criteria. The retrospective results represent that current studies can identify IA in different modal images and predict their risk of rupture and blockage. In clinical diagnosis, AI can effectively improve the diagnostic accuracy of IA and reduce missed detection and false positives. CONCLUSIONS The AI algorithm can detect unobtrusive IA more accurately in communicating arteries and cavernous sinus arteries to avoid further expansion. In addition, analyzing aneurysm rupture and blockage before and after surgery can help doctors plan treatment and reduce the uncertainties in the treatment process.
Collapse
Affiliation(s)
- Zhiyue Zhou
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Jin
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Haili Ye
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Zhang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Lehnen NC, Schievelkamp AH, Gronemann C, Haase R, Krause I, Gansen M, Fleckenstein T, Dorn F, Radbruch A, Paech D. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography. Neuroradiology 2024; 66:1153-1160. [PMID: 38619571 DOI: 10.1007/s00234-024-03351-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.
Collapse
Affiliation(s)
- Nils C Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Arndt-Hendrik Schievelkamp
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Christian Gronemann
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Robert Haase
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Inga Krause
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Gansen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Tobias Fleckenstein
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
14
|
Wen Z, Wang Y, Zhong Y, Hu Y, Yang C, Peng Y, Zhan X, Zhou P, Zeng Z. Advances in research and application of artificial intelligence and radiomic predictive models based on intracranial aneurysm images. Front Neurol 2024; 15:1391382. [PMID: 38694771 PMCID: PMC11061371 DOI: 10.3389/fneur.2024.1391382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Intracranial aneurysm is a high-risk disease, with imaging playing a crucial role in their diagnosis and treatment. The rapid advancement of artificial intelligence in imaging technology holds promise for the development of AI-based radiomics predictive models. These models could potentially enable the automatic detection and diagnosis of intracranial aneurysms, assess their status, and predict outcomes, thereby assisting in the creation of personalized treatment plans. In addition, these techniques could improve diagnostic efficiency for physicians and patient prognoses. This article aims to review the progress of artificial intelligence radiomics in the study of intracranial aneurysms, addressing the challenges faced and future prospects, in hopes of introducing new ideas for the precise diagnosis and treatment of intracranial aneurysms.
Collapse
Affiliation(s)
- Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
| | - Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
| | - Yuxin Zhong
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yiheng Hu
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Cheng Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yan Peng
- Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiang Zhan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhen Zeng
- Psychiatry Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Tajima T, Akai H, Yasaka K, Kunimatsu A, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Comparison of 1.5 T and 3 T magnetic resonance angiography for detecting cerebral aneurysms using deep learning-based computer-assisted detection software. Neuroradiology 2023; 65:1473-1482. [PMID: 37646791 DOI: 10.1007/s00234-023-03216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE To compare the diagnostic performance of 1.5 T versus 3 T magnetic resonance angiography (MRA) for detecting cerebral aneurysms with clinically available deep learning-based computer-assisted detection software (EIRL aneurysm® [EIRL_an]), which has been approved by the Japanese Pharmaceuticals and Medical Devices Agency. We also sought to analyze the causes of potential false positives. METHODS In this single-center, retrospective study, we evaluated the MRA scans of 90 patients who underwent head MRA (1.5 T and 3 T in 45 patients each) in clinical practice. Overall, 51 patients had 70 aneurysms. We used MRI from a vendor not included in the dataset used to create the EIRL_an algorithm. Two radiologists determined the ground truth, the accuracy of the candidates noted by EIRL_an, and the causes of false positives. The sensitivity, number of false positives per case (FPs/case), and the causes of false positives were compared between 1.5 T and 3 T MRA. Pearson's χ2 test, Fisher's exact test, and the Mann‒Whitney U test were used for the statistical analyses as appropriate. RESULTS The sensitivity was high for 1.5 T and 3 T MRA (0.875‒1), but the number of FPs/case was significantly higher with 3 T MRA (1.511 vs. 2.578, p < 0.001). The most common causes of false positives (descending order) were the origin/bifurcation of vessels/branches, flow-related artifacts, and atherosclerosis and were similar between 1.5 T and 3 T MRA. CONCLUSION EIRL_an detected significantly more false-positive lesions with 3 T than with 1.5 T MRA in this external validation study. Our data may help physicians with limited experience with MRA to correctly diagnose aneurysms using EIRL_an.
Collapse
Affiliation(s)
- Taku Tajima
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Hiroyuki Akai
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Koichiro Yasaka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Kunimatsu
- Department of Radiology, International University of Health and Welfare Mita Hospital, 1-4-3 Mita, Minato-Ku, Tokyo, 108-8329, Japan
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Naoki Yoshioka
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Masaaki Akahane
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan
| | - Kuni Ohtomo
- International University of Health and Welfare, 2600-1 Kitakanamaru, Otawara, Tochigi, 324-8501, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.
| |
Collapse
|
16
|
Zhou Y, Yang Y, Fang T, Jia S, Nie S, Ye X. Joint two-stage convolutional neural networks for intracranial aneurysms detection on 3D TOF-MRA. Phys Med Biol 2023; 68:185001. [PMID: 37607561 DOI: 10.1088/1361-6560/acf2e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Objective. This study aims to develop a three-dimensional convolutional neural network utilizing computer-aided diagnostic technology to facilitate the detection of intracranial aneurysms and automatically assess their location and extent, thereby enhancing the efficiency of radiologists, and streamlining clinical workflows.Approach. A retrospective study was conducted, proposing a joint segmentation and classification network (JSCD-Net) that employs 3D time-of-flight magnetic resonance angiography images for preliminary detection of aneurysms and the minimization of false positives. Specifically, the U-Net++ network was utilized for pre-detection of aneurysms. This was followed by the creation of a multi-path network, co-trained with U-Net++ to correct the results of the first stage to further reduce the rate of false positives. Model effectiveness and robustness were evaluated using sensitivity and false positive analyses on internal and external datasets. A cross-validated free-response receiver operating characteristic curve was also plotted.Main results. JSCD-Net demonstrated a sensitivity of 91.2% (31 of 34; 95% CI: 77.0, 97.0) with an average of 3.55 false positives per scan on the internal test set. For the external test set, it identified 97.2% (70 of 72; 95% CI: 90.4, 99.2) of aneurysms with an average of 2.7 false positives per scan.Significance. When compared with the existing studies, the proposed model shows high sensitivity in detecting intracranial aneurysms with a reasonable number of false positives per case. This result emphasizes the model's potential as a valuable tool in aiding clinical diagnoses.
Collapse
Affiliation(s)
- Yuxi Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yifeng Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Ting Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Shouqiang Jia
- Department of Imaging, Jinan People's Hospital affiliated to Shandong First Medical University, Shandong, 271100, People's Republic of China
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xiaodan Ye
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
17
|
Lapraz P, Pinsard Q, Coudert R, Cortese J, Rouchaud A. Association between flow patterns of the posterior cerebral arterial circle and basilar-tip aneurysms. Surg Radiol Anat 2023; 45:505-511. [PMID: 36894789 DOI: 10.1007/s00276-023-03121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE The Cerebral arterial circle presents multiple individual anatomical configurations which are of the highest importance regarding the pathological processes for intracranial aneurysms development. Previous studies highlighted the importance of geometry and especially arterial bifurcations leading to aneurysms development. The primary objective of this study was to determine whether a flow pattern asymmetry of the P1 segments of the posterior cerebral arteries was associated with a higher risk of basilar tip aneurysm. MATERIAL AND METHODS Two different populations were retrospectively reviewed. The first population, without aneurysm, for which TOF MRI sequences were reviewed. The second population with patients harboring basilar tip aneurysms for whom cerebral angiograms were reviewed. We retrospectively analyzed the flow contribution and symmetry of the two right and left P1 segments of the posterior cerebral arteries and the two posterior communicating arteries (Pcomm). We analyzed the association and risk factors for basilar tip aneurysm. RESULTS The anatomical and flow configurations of P1 and Pcomm have been reviewed in 467 patients without aneurysms and 35 patients with aneurysms. We identified a significant association between the flow pattern asymmetry of the P1 segments and the presence of a basilar tip aneurysm (OR = 2.12; IC95% = [1.01-4.36]; p = 0.04). We also confirmed that the male gender was protective against aneurysm (OR = 0.45; IC95% = [0.194-0.961]; p = 0.04). CONCLUSION Non-modal basilar tip bifurcation and flow asymmetry of P1 segments are associated with an increased risk of basilar tip aneurysm. These findings highlight the importance of analyzing MRI-TOF of the posterior configuration of the Cerebral arterial circle to potentially refine the aneurysms risk prediction.
Collapse
Affiliation(s)
- Pierre Lapraz
- Department of Human Anatomy, Laboratoire d'Anatomie, Faculty of Medicine, University of Limoges, 2, rue du Docteur Marcland, 87025, Limoges, France
| | - Quentin Pinsard
- Department of Human Anatomy, Laboratoire d'Anatomie, Faculty of Medicine, University of Limoges, 2, rue du Docteur Marcland, 87025, Limoges, France
| | - Romain Coudert
- Department of Radiology, Limoges University Hospital, CHU Dupuytren, 2, Avenue Martin-Luther-King, 87000, Limoges, France
| | - Jonathan Cortese
- Department of Interventional Neuroradiology-NEURI Brain Vascular Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Aymeric Rouchaud
- Department of Radiology, Limoges University Hospital, CHU Dupuytren, 2, Avenue Martin-Luther-King, 87000, Limoges, France. .,UMR 7252, University of Limoges, XLIM CNRS, 87000, Limoges, France.
| |
Collapse
|
18
|
Geng J, Wang Y, Ji Z, Wang W, Yin Y, Yang G, Fan X, Li T, Hu P, He C, Zhang H. Advantages of 3D registration technology (3DRT) in clinical application of unruptured intracranial aneurysm follow-up: A novel method to judge aneurysm growth. J Neuroradiol 2023; 50:209-216. [PMID: 36041561 DOI: 10.1016/j.neurad.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Currently available methods for determining aneurysm growth are not accurate enough. Therefore, we introduced a more intuitive and accurate 3D registration technology (3DRT) to judge the growth of aneurysms. MATERIALS AND METHODS We developed an in-house technique for 3DRT and calculated its derivative parameters, voxel change rate (VCR), maximum growth vector (MGV), and parent artery coincidence (PAC). To verify the accuracy, growing aneurysms and stable aneurysms matching 1:3 were selected, and a 3DRT measurement was performed. We calculated the sensitivity, specificity, and accuracy of cases with VCR > 20%, MGV > 1 mm, and combined indicator of VCR > 20% + MGV >1 mm. In addition, we analyzed the cause of the poor registration effect, where the registration effect of PAC > 0.7 was considered acceptable. We also collected 24 consecutive aneurysms for agreement analysis of 2D manual measurement and 3DRT. RESULTS Twenty-seven growing aneurysms and 81 stable aneurysms were included in the normal model group, and 88 aneurysms with good registration effect in the adjusted model group. For aneurysms with VCR > 20%, the sensitivity and the specificity were the highest at 81.48% and 91.35%, respectively, while in the adjusted model group, the sensitivity and the specificity increased to 94.44% and 94.29%, respectively. When using VCR > 20% as the growth metric, the AUC value in the normal and the adjusted model group was 0.856 and 0.947, respectively. The ICC between 2D manual measurements and the 3DRT was 0.95 (95%CI: 0.88-0.98), and the time spent between the two groups had a significant difference (10.96 min vs. 3.44 min, p<0.01, 95% CI, 6.49-8.53). CONCLUSIONS A 3DRT can be used to determine the growth of the aneurysm more efficiently, intuitively, and accurately.
Collapse
Affiliation(s)
- Jiewen Geng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Yadong Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China; Department of Neurosurgery, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Zhe Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Wenzhi Wang
- Department of R&D, UnionStrong (Beijing) Technology Co., Ltd., Beijing, China
| | - Yin Yin
- Department of R&D, UnionStrong (Beijing) Technology Co., Ltd., Beijing, China
| | - Guangming Yang
- Department of R&D, UnionStrong (Beijing) Technology Co., Ltd., Beijing, China
| | - Xinxin Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China; Department of Neurosurgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shanxi, China
| | | | - Peng Hu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Chuan He
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute, Beijing, China.
| |
Collapse
|
19
|
Zhu G, Luo X, Yang T, Cai L, Yeo JH, Yan G, Yang J. Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size. Front Physiol 2022; 13:1084202. [PMID: 36601346 PMCID: PMC9806214 DOI: 10.3389/fphys.2022.1084202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The manual identification and segmentation of intracranial aneurysms (IAs) involved in the 3D reconstruction procedure are labor-intensive and prone to human errors. To meet the demands for routine clinical management and large cohort studies of IAs, fast and accurate patient-specific IA reconstruction becomes a research Frontier. In this study, a deep-learning-based framework for IA identification and segmentation was developed, and the impacts of image pre-processing and convolutional neural network (CNN) architectures on the framework's performance were investigated. Three-dimensional (3D) segmentation-dedicated architectures, including 3D UNet, VNet, and 3D Res-UNet were evaluated. The dataset used in this study included 101 sets of anonymized cranial computed tomography angiography (CTA) images with 140 IA cases. After the labeling and image pre-processing, a training set and test set containing 112 and 28 IA lesions were used to train and evaluate the convolutional neural network mentioned above. The performances of three convolutional neural networks were compared in terms of training performance, segmentation performance, and segmentation efficiency using multiple quantitative metrics. All the convolutional neural networks showed a non-zero voxel-wise recall (V-Recall) at the case level. Among them, 3D UNet exhibited a better overall segmentation performance under the relatively small sample size. The automatic segmentation results based on 3D UNet reached an average V-Recall of 0.797 ± 0.140 (3.5% and 17.3% higher than that of VNet and 3D Res-UNet), as well as an average dice similarity coefficient (DSC) of 0.818 ± 0.100, which was 4.1%, and 11.7% higher than VNet and 3D Res-UNet. Moreover, the average Hausdorff distance (HD) of the 3D UNet was 3.323 ± 3.212 voxels, which was 8.3% and 17.3% lower than that of VNet and 3D Res-UNet. The three-dimensional deviation analysis results also showed that the segmentations of 3D UNet had the smallest deviation with a max distance of +1.4760/-2.3854 mm, an average distance of 0.3480 mm, a standard deviation (STD) of 0.5978 mm, a root mean square (RMS) of 0.7269 mm. In addition, the average segmentation time (AST) of the 3D UNet was 0.053s, equal to that of 3D Res-UNet and 8.62% shorter than VNet. The results from this study suggested that the proposed deep learning framework integrated with 3D UNet can provide fast and accurate IA identification and segmentation.
Collapse
Affiliation(s)
- Guangyu Zhu
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China,*Correspondence: Guangyu Zhu, ; Jian Yang,
| | - Xueqi Luo
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Tingting Yang
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Li Cai
- Xi’an Key Laboratory of Scientific Computation and Applied Statistics, Xi’an, China,School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, China
| | - Joon Hock Yeo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ge Yan
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Guangyu Zhu, ; Jian Yang,
| |
Collapse
|
20
|
Lehnen NC, Haase R, Schmeel FC, Vatter H, Dorn F, Radbruch A, Paech D. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study. AJNR Am J Neuroradiol 2022; 43:1700-1705. [PMID: 36357154 DOI: 10.3174/ajnr.a7695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysms yield the risk of rupture, severe disability and death. Thus, early detection of cerebral aneurysms is crucial to ensure timely treatment, if necessary. AI-based software tools are expected to enhance radiologists' performance in detecting pathologies like cerebral aneurysms in the future. Our aim was to evaluate the diagnostic performance of an artificial intelligence-based software designed to detect intracranial aneurysms on TOF-MRA. MATERIALS AND METHODS One hundred ninety-one MR imaging data sets were analyzed using the software mdbrain for the presence of intracranial aneurysms on TOF-MRA obtained using two 3T MR imaging scanners or a 1.5T MR imaging scanner according to our clinical standard protocol. The results were compared with the reading of an experienced radiologist as a criterion standard to measure the sensitivity, specificity, positive and negative predictive values, and accuracy of the software. Additionally, detection rates depending on size, morphology, and location of the aneurysms were evaluated. RESULTS Fifty-four aneurysms were detected by the expert reader. The overall sensitivity of the software for the detection of cerebral aneurysms was 72.6%, the specificity was 87.2%, and the accuracy was 82.6%. The positive predictive value was 67.9%, and the negative predictive value was 88.5%. We observed a sensitivity of 100% for saccular aneurysms of >5 mm without signs of thrombosis and low detection rates for fusiform or thrombosed aneurysms of 33.3% and 16.7%, respectively. Of 8 aneurysms that were not included in the initial written reports but were detected by the expert reader, retrospectively, 4 were detected by the software. CONCLUSIONS Our data suggest that the software can assist radiologists in reporting TOF-MRA. The software was highly reliable in detecting saccular aneurysms, while for fusiform or thrombosed aneurysms, further improvements are needed. Further studies are necessary to investigate the impact of the software on detection rates, interrater reliability, and reading times.
Collapse
Affiliation(s)
- N C Lehnen
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - R Haase
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - F C Schmeel
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - H Vatter
- Neurosurgery (H.V.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - F Dorn
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - A Radbruch
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - D Paech
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| |
Collapse
|
21
|
How feasible is end-to-end deep learning for clinical neuroimaging? J Neuroradiol 2022; 49:399-400. [DOI: 10.1016/j.neurad.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|