1
|
Peraita-Adrados R, Bravo-Quelle N. Autoimmune encephalitis mediated by postvaccination and infection of SARS-CoV-2 in a patient with a narcolepsy type 1. Rev Neurol 2024; 78:265-268. [PMID: 38682764 PMCID: PMC11407467 DOI: 10.33588/rn.7809.2023306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION We present a narcolepsy type 1 patient that develop an autoimmune encephalitis post vaccine and/or a SARS-CoV-2 infection. CASE REPORT At 23 years old, the patient was referred to the emergency room with difficult speaking, headache and tremor followed by changes in behavior, autonomic dysfunction, right focal motor seizure and lethargy. He has received seven weeks before mRNA-1273 (Moderna) vaccine followed by a SARS-CoV-2 infection four weeks after vaccination (positive antigen test). RESULTS The neurological examination was normal (visual fields, cranial nerves, motor, sensory and reflexes). Nasopharyngeal swab polymerase chain reaction (PCR) testing for COVID-19 was negative. Cerebrospinalfluid (CSF) had highly elevated protein and lymphocytic pleocytosis. CSF bacterial and fungal cultures for viral infections were negative. Brain magnetic resonance imaging (MRI) showed no abnormality on the non-enhanced sequences but the diffusion weighted imaging showed restricted diffusion with high signal on the left hemisphere mainly in the cerebral cortex with a gyro morphology, patched distribution with involvement of the temporal and frontal lobes. Chest, abdomen and pelvis computed tomography; pelvic and scrotum ultrasound, showed no malignancy. Onconeural antibodies were negative. The patient was treated with plasmapheresis and corticosteroids with a good clinical outcome and near complete resolution of the MRI abnormalities. CONCLUSION The patient fulfilled the diagnostic criteria for autoimmune encephalitis with subacute onset. COVID-19 infection and vaccination could constitute a risk in a patient with narcolepsy as in this case and, could help to provide better understanding of the implication of immune-mediated processes in the pathophysiology of the diseases.
Collapse
Affiliation(s)
- R Peraita-Adrados
- Hospital Genral Universitario e Instituto de Investigación Sanitaria Gregorio Marañón. UCM., Madrid, España
| | - N Bravo-Quelle
- Hospital General Universitario e Instituto de Investigación Gregorio Marañón. UCM., Madrid, España
| |
Collapse
|
2
|
Viscasillas Sancho M, Moreno Loscertales C, García Rubio S, Sagarra Mur D. Hashimoto encephalopathy after vaccination against SARS-CoV-2. Neurologia 2023; 38:601-602. [PMID: 36240986 PMCID: PMC9554198 DOI: 10.1016/j.nrleng.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - S García Rubio
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - D Sagarra Mur
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| |
Collapse
|
3
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
4
|
Ghaderi S, Mohammadi S, Heidari M, Sharif Jalali SS, Mohammadi M. Post-COVID-19 Vaccination CNS Magnetic Resonance Imaging Findings: A Systematic Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:1570830. [PMID: 37427078 PMCID: PMC10325882 DOI: 10.1155/2023/1570830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE This systematic review aims to synthesize and analyze the available literature on central nervous system (CNS) magnetic resonance imaging (MRI) findings in individuals who have received COVID-19 vaccinations. Our objective is to enhance understanding of potential neurological side effects, inform clinical practice, and guide future research on the neurological implications of COVID-19 vaccination. METHODS In this systematic review, we conducted a comprehensive search in PubMed, Scopus, and Web of Science from January 2020 to April 2023, using terms related to COVID-19 vaccination and CNS MRI findings. We evaluated the quality of the study, extracted relevant data, and included 89 eligible studies that covered various vaccines, demographics of patients, symptoms, and MRI findings to provide a thorough understanding of SARS-CoV-2 vaccination-related CNS problems. RESULTS We investigated CNS MRI findings following COVID-19 vaccination across various vaccine types. Common diseases associated with post-vaccination CNS MRI findings included cerebral venous sinus thrombosis (CVST), vaccine-induced immune thrombotic thrombocytopenia (VITT), acute disseminated encephalomyelitis (ADEM), acute myelitis, autoimmune encephalitis (AE), and others. Patients presented with diverse onset symptoms and neurological manifestations. Abnormalities identified in CNS MRI findings included white matter (WM) hyperintensity. Our analysis offers a comprehensive overview of the current literature on post-vaccination CNS MRI findings. Discussion. We highlight a range of post-COVID-19 vaccination CNS MRI findings, including CVST, with a higher incidence in individuals receiving the ChAdOx1 (AstraZeneca) vaccine. Other notable observations include cases of ADEM, myelitis or transverse myelitis (TM), Guillain-Barré syndrome (GBS), and acute encephalopathy following COVID-19 vaccination. The incidence of these neurological complications is extremely rare, and the benefits of vaccination outweigh the risks. The reviewed studies were primarily case reports or case series, and thus large-scale epidemiological studies and controlled clinical trials are needed to better understand the underlying mechanisms and risk factors associated with these neurological complications following COVID-19 vaccination.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrsa Heidari
- Department of Medical Science, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Shadi Sharif Jalali
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Abstract
We review the wide variety of common neuroimaging manifestations related to coronavirus disease 2019 (COVID-19) and COVID therapies, grouping the entities by likely pathophysiology, recognizing that the etiology of many entities remains uncertain. Direct viral invasion likely contributes to olfactory bulb abnormalities. COVID meningoencephalitis may represent direct viral infection and/or autoimmune inflammation. Para-infectious inflammation and inflammatory demyelination at the time of infection are likely primary contributors to acute necrotizing encephalopathy, cytotoxic lesion of the corpus callosum, and diffuse white matter abnormality. Later postinfectious inflammation and demyelination may manifest as acute demyelinating encephalomyelitis, Guillain-Barré syndrome, or transverse myelitis. The hallmark vascular inflammation and coagulopathy of COVID-19 may produce acute ischemic infarction, microinfarction contributing to white matter abnormality, space-occupying hemorrhage or microhemorrhage, venous thrombosis, and posterior reversible encephalopathy syndrome. Adverse effects of therapies including zinc, chloroquine/hydroxychloroquine, antivirals, and vaccines, and current evidence regarding "long COVID" is briefly reviewed. Finally, we present a case of bacterial and fungal superinfection related to immune dysregulation from COVID.
Collapse
Affiliation(s)
- Jisoo Kim
- Division of Neuroradiology, Department of Radiology, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts
| | - Geoffrey S Young
- Division of Neuroradiology, Department of Radiology, Harvard Medical School & Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Pakfetrat M, Malekmakan L, Najafi B, Zamani T, Mashayekh M. Post-COVID-19 vaccine acute encephalitis in an adult patient: A case report and literature review. Clin Case Rep 2023; 11:e6915. [PMID: 36789322 PMCID: PMC9909164 DOI: 10.1002/ccr3.6915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Several vaccines were approved after COVID-19 pandemic, which have been fast-tracked for emergency use. The short- and long-term safety profile has been an area of concern. We presented a patient with encephalitis followed by hyponatremia who developed hallucination and seizure 1 day after receiving the second dose of Sinopharm vaccine.
Collapse
Affiliation(s)
- Maryam Pakfetrat
- Department of Community Medicine, Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Leila Malekmakan
- Department of Community Medicine, Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Bijan Najafi
- Department of Community Medicine, Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Taraneh Zamani
- Internal Medicine DepartmentLarestan University of Medical SciencesLarestanIran
| | - Mina Mashayekh
- Department of Community Medicine, Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
8
|
Banazadeh M, Olangian-Tehrani S, Sharifi M, Malek-Ahmadi M, Nikzad F, Doozandeh-Nargesi N, Mohammadi A, Stephens GJ, Shabani M. Mechanisms of COVID-19-induced cerebellitis. Curr Med Res Opin 2022; 38:2109-2118. [PMID: 36305796 DOI: 10.1080/03007995.2022.2141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV2 has raised several important health concerns, not least increased mortality and morbidity. SARS-CoV2 can infect the central nervous system via hematogenous or transneuronal routes, acting through different receptors including ACE2, DPP4, and neuropilin 1 and cause several issues, including the focus here, cerebellitis. The cerebellum is an essential part of the CNS located adjacent to the brainstem with a complex micro and macroscopic structure. The cerebellum plays several physiological roles, such as coordination, cognition, and executive functioning. Damage to the cerebellum can lead to incoordination and ataxia. In our narrative review, we searched different databases from 2021 to 2022 with the keywords cerebellum and COVID-19; 247 studies were identified and reviewed, focusing on clinical studies and excluding non-clinical studies; 56 studies were finally included for analysis. SARS-CoV2 infection of the cerebellum can be seen to be assessed through many methods such as MRI, PET, CT, postmortem studies, and histological findings. These methodological studies have demonstrated that cerebellar infection with COVID-19 can bring about several sequelae: thrombosis, microbleed, hemorrhage, stroke, autoantibody production, ataxia, and widespread inflammation in the cerebellum. Such central effects are likely to exacerbate the known multiorgan effects of SARS-CoV2 and should also be considered as part of disease prognosis.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Melika Sharifi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Nikzad
- Avicennet, Tehran, Iran
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alireza Mohammadi
- School of Pharmacy, Guilan University of Medical Science, Rasht, Iran
| | - Gary J Stephens
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Viscasillas Sancho M, Moreno Loscertales C, García Rubio S, Sagarra Mur D. Encefalopatía de Hashimoto posvacuna frente a coronavirus 2 del síndrome respiratorio agudo grave. Neurologia 2022; 38:S0213-4853(22)00196-7. [PMID: 36245942 PMCID: PMC9554339 DOI: 10.1016/j.nrl.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
| | | | - S García Rubio
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España
| | - D Sagarra Mur
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España
| |
Collapse
|
10
|
Brandt RB, Ouwehand RLH, Ferrari MD, Haan J, Fronczek R. COVID-19 vaccination-triggered cluster headache episodes with frequent attacks. Cephalalgia 2022; 42:1420-1424. [PMID: 35833226 DOI: 10.1177/03331024221113207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathophysiology of cluster headache and how cluster episodes are triggered, are still poorly understood. Recurrent inflammation of the trigeminovascular system has been hypothesized. It was noted that some long-term attack-free cluster headache patients suddenly developed a new cluster episode shortly after COVID-19 vaccination. METHODS Cases are described from patients with cluster headache who reported a new cluster episode within days after COVID-19 vaccination. All cases were seen in a tertiary university referral center and a general hospital in the Netherlands between March 2021 and December 2021, when the first COVID-19 vaccinations were carried out in The Netherlands. Clinical characteristics of the previous and new cluster episodes, and time between the onset of a new cluster episode and a previous COVID-19 vaccination were reported. RESULTS We report seven patients with cluster headache, who had been attack-free for a long time, in whom a new cluster episode occurred within a few days after a COVID-19 vaccination. INTERPRETATION COVID-19 vaccinations may trigger new cluster episodes in patients with cluster headache, possibly by activating a pro-inflammatory state of the trigeminocervical complex. COVID-19 vaccinations may also exacerbate other neuroinflammatory conditions. .
Collapse
Affiliation(s)
- Roemer B Brandt
- Department of Neurology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Rosa-Lin H Ouwehand
- Department of Neurology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands.,Department of Neurology, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| |
Collapse
|