1
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2025; 45:431-442. [PMID: 39177056 PMCID: PMC11572096 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
2
|
Ibrahim I, Škoch A, Dezortová M, Adla T, Flusserová V, Nagy M, Douchová I, Fialová M, Filová V, Pajuelo D, Ibrahimová M, Tintěra J. Evaluation of microstructural brain changes in post-coronavirus disease 2019 (COVID-19) patients with neurological symptoms: a cross-sectional study. Quant Imaging Med Surg 2024; 14:5499-5512. [PMID: 39144056 PMCID: PMC11320515 DOI: 10.21037/qims-24-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 08/16/2024]
Abstract
Background Changes in both the vascular system and brain tissues can occur after a prior episode of coronavirus disease 2019 (COVID-19), detectable through modifications in diffusion parameters using magnetic resonance imaging (MRI) techniques. These changes in diffusion parameters may be particularly prominent in highly organized structures such as the corpus callosum (CC), including its major components, which have not been adequately studied following COVID-19 infection. Therefore, the study aimed to evaluate microstructural changes in whole-brain (WB) diffusion, with a specific focus on the CC. Methods A total of 101 probands (age range from 18 to 69 years) participated in this retrospective study, consisting of 55 volunteers and 46 post-COVID-19 patients experiencing neurological symptoms. The participants were recruited from April 2022 to September 2023 at the Institute for Clinical and Experimental Medicine in Prague, Czech Republic. All participants underwent MRI examinations on a 3T MR scanner with a diffusion protocol, complemented by additional MRI techniques. Two volunteers and five patients were excluded from the study due to motion artefacts, severe hypoperfusion or the presence of lesions. Participants were selected by a neurologist based on clinical examination and a serological test for COVID-19 antibodies. They were then divided into three groups: a control group of healthy volunteers (n=28), an asymptomatic group (n=25) with a history of infection but no symptoms, and a symptomatic group (n=41) with a history of COVID-19 and neurological symptoms. Symptomatic patients did not exhibit neurological symptoms before contracting COVID-19. Diffusion data underwent eddy current and susceptibility distortion corrections, and fiber tracking was performed using default parameters in DSI studio. Subsequently, various diffusion metrics, were computed within the reconstructed tracts of the WB and CC. To assess the impact of COVID-19 and its associated symptoms on diffusion indices within the white matter of the WB and CC regions, while considering age, we employed a statistical analysis using a linear mixed-effects model within the R framework. Results Statistical analysis revealed a significant difference in mean diffusivity (MD) between the symptomatic and control groups in the forceps minor (P=0.001) and CC body (P=0.003). In addition to changes in diffusion, alterations in brain perfusion were observed in two post-COVID-19 patients who experienced a severe course. Furthermore, hyperintense lesions were identified in subcortical and deep white matter areas in the vast majority of symptomatic patients. Conclusions The main finding of our study was that post-COVID-19 patients exhibit increased MD in the forceps minor and body of the CC. This finding suggests a potential association between microstructural brain changes in post-COVID-19 patients and reported neurological symptoms, with significant implications for research and clinical applications.
Collapse
Affiliation(s)
- Ibrahim Ibrahim
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonín Škoch
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Dezortová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Theodor Adla
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vlasta Flusserová
- Specialised Outpatient Care Division, Department of Neurology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Markéta Nagy
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Douchová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Fialová
- Laboratory Methods Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vanda Filová
- Laboratory Methods Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Pajuelo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Markéta Ibrahimová
- Laboratory of Immunology, Thomayer University Hospital, Prague, Czech Republic
| | - Jaroslav Tintěra
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
3
|
van der Knaap N, Ariës MJH, van der Horst ICC, Jansen JFA. On the merits and potential of advanced neuroimaging techniques in COVID-19: A scoping review. Neuroimage Clin 2024; 42:103589. [PMID: 38461701 PMCID: PMC10938171 DOI: 10.1016/j.nicl.2024.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Many Coronavirus Disease 2019 (COVID-19) patients are suffering from long-term neuropsychological sequelae. These patients may benefit from a better understanding of the underlying neuropathophysiological mechanisms and identification of potential biomarkers and treatment targets. Structural clinical neuroimaging techniques have limited ability to visualize subtle cerebral abnormalities and to investigate brain function. This scoping review assesses the merits and potential of advanced neuroimaging techniques in COVID-19 using literature including advanced neuroimaging or postmortem analyses in adult COVID-19 patients published from the start of the pandemic until December 2023. Findings were summarized according to distinct categories of reported cerebral abnormalities revealed by different imaging techniques. Although no unified COVID-19-specific pattern could be subtracted, a broad range of cerebral abnormalities were revealed by advanced neuroimaging (likely attributable to hypoxic, vascular, and inflammatory pathology), even in absence of structural clinical imaging findings. These abnormalities are validated by postmortem examinations. This scoping review emphasizes the added value of advanced neuroimaging compared to structural clinical imaging and highlights implications for brain functioning and long-term consequences in COVID-19.
Collapse
Affiliation(s)
- Noa van der Knaap
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marcel J H Ariës
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Tavares-Júnior JWL, Ciurleo GCV, Feitosa EDAAF, Oriá RB, Braga-Neto P. The Clinical Aspects of COVID and Alzheimer's Disease: A Round-Up of Where Things Stand and Are Headed. J Alzheimers Dis 2024; 99:1159-1171. [PMID: 38848177 DOI: 10.3233/jad-231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.
Collapse
Affiliation(s)
| | - Gabriella Cunha Vieira Ciurleo
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Reinaldo B Oriá
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Department of Morphology and Institute of Biomedicine, Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, School of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro Braga-Neto
- Department of Clinical Medicine, Neurology Section, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Center of Health Sciences, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Burnett FN, Coucha M, Bolduc DR, Hermanns VC, Heath SP, Abdelghani M, Macias-Moriarity LZ, Abdelsaid M. SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation. Int J Mol Sci 2023; 24:16394. [PMID: 38003584 PMCID: PMC10671133 DOI: 10.3390/ijms242216394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetics are more vulnerable to SARS-CoV-2 neurological manifestations. The molecular mechanisms of SARS-CoV-2-induced cerebrovascular dysfunction in diabetes are unclear. We hypothesize that SARS-CoV-2 exacerbates diabetes-induced cerebrovascular oxidative stress and inflammation via activation of the destructive arm of the renin-angiotensin-aldosterone system (RAAS) and Toll-like receptor (TLR) signaling. SARS-CoV-2 spike protein was injected in humanized ACE2 transgenic knock-in mice. Cognitive functions, cerebral blood flow, cerebrovascular architecture, RAAS, and TLR signaling were used to determine the effect of SARS-CoV-2 spike protein in diabetes. Studies were mirrored in vitro using human brain microvascular endothelial cells treated with high glucose-conditioned media to mimic diabetic conditions. Spike protein exacerbated diabetes-induced cerebrovascular oxidative stress, inflammation, and endothelial cell death resulting in an increase in vascular rarefaction and diminished cerebral blood flow. SARS-CoV-2 spike protein worsened cognitive dysfunction in diabetes compared to control mice. Spike protein enhanced the destructive RAAS arm at the expense of the RAAS protective arm. In parallel, spike protein significantly exacerbated TLR signaling in diabetes, aggravating inflammation and cellular apoptosis vicious circle. Our study illustrated that SAR-CoV-2 spike protein intensified RAAS and TLR signaling in diabetes, increasing cerebrovascular damage and cognitive dysfunction.
Collapse
Affiliation(s)
- Faith N. Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA 31406, USA; (M.C.); (L.Z.M.-M.)
| | - Deanna R. Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| | - Veronica C. Hermanns
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| | - Stan P. Heath
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| | - Maryam Abdelghani
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| | - Lilia Z. Macias-Moriarity
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA 31406, USA; (M.C.); (L.Z.M.-M.)
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA; (F.N.B.); (V.C.H.); (S.P.H.); (M.A.)
| |
Collapse
|
6
|
Poli A, Cappellini F, Sala J, Miccoli M. The integrative process promoted by EMDR in dissociative disorders: neurobiological mechanisms, psychometric tools, and intervention efficacy on the psychological impact of the COVID-19 pandemic. Front Psychol 2023; 14:1164527. [PMID: 37727746 PMCID: PMC10505816 DOI: 10.3389/fpsyg.2023.1164527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Dissociative disorders (DDs) are characterized by a discontinuity in the normal integration of consciousness, memory, identity, emotion, perception, bodily representation, motor control, and action. The life-threatening coronavirus disease 2019 (COVID-19) pandemic has been identified as a potentially traumatic event and may produce a wide range of mental health problems, such as depression, anxiety disorders, sleep disorders, and DD, stemming from pandemic-related events, such as sickness, isolation, losing loved ones, and fear for one's life. In our conceptual analysis, we introduce the contribution of the structural dissociation of personality (SDP) theory and polyvagal theory to the conceptualization of the COVID-19 pandemic-triggered DD and the importance of assessing perceived safety in DD through neurophysiologically informed psychometric tools. In addition, we analyzed the contribution of eye movement desensitization and reprocessing (EMDR) to the treatment of the COVID-19 pandemic-triggered DD and suggest possible neurobiological mechanisms of action of the EMDR. In particular, we propose that, through slow eye movements, the EMDR may promote an initial non-rapid-eye-movement sleep stage 1-like activity, a subsequent access to a slow-wave sleep activity, and an oxytocinergic neurotransmission that, in turn, may foster the functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioinhibitory nuclei. Neurophysiologically informed psychometric tools for safety evaluation in DDs are discussed. Furthermore, clinical and public health implications are considered, combining the EMDR, SDP theory, and polyvagal conceptualizations in light of the potential dissociative symptomatology triggered by the COVID-19 pandemic.
Collapse
|
7
|
Sen S, Newman-Norlund R, Riccardi N, Rorden C, Newman-Norlund S, Sayers S, Fridriksson J, Logue M. Cerebral blood flow in patients recovered from mild COVID-19. J Neuroimaging 2023; 33:764-772. [PMID: 37265421 PMCID: PMC11205277 DOI: 10.1111/jon.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral hypoperfusion has been described in both severe and mild forms of symptomatic Coronavirus Disease 2019 (COVID-19) infection. The purpose of this study was to investigate global and regional cerebral blood flow (CBF) in asymptomatic COVID-19 patients. METHODS Cases with mild COVID-19 infection and age-, sex-, and race-matched healthy controls were drawn from the Aging Brain Consortium at The University of South Carolina data repository. Demographics, risk factors, and data from the Montreal Cognitive Assessment were collected. Mean CBF values for gray matter (GM), white matter (WM), and the whole brain were calculated by averaging CBF values of standard space-normalized CBF image values falling within GM and WM masks. Whole brain region of interest-based analyses were used to create standardized CBF maps and explore differences between groups. RESULTS Twenty-eight cases with prior mild COVID-19 infection were compared with 28 controls. Whole-brain CBF (46.7 ± 5.6 vs. 49.3 ± 3.7, p = .05) and WM CBF (29.3 ± 2.6 vs. 31.0 ± 1.6, p = .03) were noted to be significantly lower in COVID-19 cases as compared to controls. Predictive models based on these data predicted COVID-19 group membership with a high degree of accuracy (85.2%, p < .001), suggesting CBF patterns are an imaging marker of mild COVID-19 infection. CONCLUSION In this study, lower WM CBF, as well as widespread regional CBF changes identified using quantitative MRI, was found in mild COVID-19 patients. Further studies are needed to determine the reliability of this newly identified COVID-19 brain imaging marker and determine what drives these CBF changes.
Collapse
Affiliation(s)
- Souvik Sen
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Roger Newman-Norlund
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Nicholas Riccardi
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Christopher Rorden
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Sarah Newman-Norlund
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Sara Sayers
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Julius Fridriksson
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| | - Makenzie Logue
- Department of Neurology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Teller N, Chad JA, Wong A, Gunraj H, Ji X, Goubran M, Gilboa A, Roudaia E, Sekuler A, Churchill N, Schweizer T, Gao F, Masellis M, Lam B, Heyn C, Cheng I, Fowler R, Black SE, MacIntosh BJ, Graham SJ, Chen JJ. Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: Application in COVID-19. Hum Brain Mapp 2023; 44:3998-4010. [PMID: 37162380 PMCID: PMC10258529 DOI: 10.1002/hbm.26322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
There has been growing attention on the effect of COVID-19 on white-matter microstructure, especially among those that self-isolated after being infected. There is also immense scientific interest and potential clinical utility to evaluate the sensitivity of single-shell diffusion magnetic resonance imaging (MRI) methods for detecting such effects. In this work, the performances of three single-shell-compatible diffusion MRI modeling methods are compared for detecting the effect of COVID-19, including diffusion-tensor imaging, diffusion-tensor decomposition of orthogonal moments and correlated diffusion imaging. Imaging was performed on self-isolated patients at the study initiation and 3-month follow-up, along with age- and sex-matched controls. We demonstrate through simulations and experimental data that correlated diffusion imaging is associated with far greater sensitivity, being the only one of the three single-shell methods to demonstrate COVID-19-related brain effects. Results suggest less restricted diffusion in the frontal lobe in COVID-19 patients, but also more restricted diffusion in the cerebellar white matter, in agreement with several existing studies highlighting the vulnerability of the cerebellum to COVID-19 infection. These results, taken together with the simulation results, suggest that a significant proportion of COVID-19 related white-matter microstructural pathology manifests as a change in tissue diffusivity. Interestingly, different b-values also confer different sensitivities to the effects. No significant difference was observed in patients at the 3-month follow-up, likely due to the limited size of the follow-up cohort. To summarize, correlated diffusion imaging is shown to be a viable single-shell diffusion analysis approach that allows us to uncover opposing patterns of diffusion changes in the frontal and cerebellar regions of COVID-19 patients, suggesting the two regions react differently to viral infection.
Collapse
Affiliation(s)
- Nick Teller
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Jordan A Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alexander Wong
- Department of System Design Engineering, University of Waterloo, Waterloo, Canada
| | - Hayden Gunraj
- Department of System Design Engineering, University of Waterloo, Waterloo, Canada
| | - Xiang Ji
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Eugenie Roudaia
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Allison Sekuler
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Nathan Churchill
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Tom Schweizer
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
- Department of Neurosurgery, University of Toronto, Toronto, Canada
| | - Fuqiang Gao
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Mario Masellis
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Benjamin Lam
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Chris Heyn
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Ivy Cheng
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Robert Fowler
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|