1
|
Botta D, Hutuca I, Ghoul EE, Sveikata L, Assal F, Lövblad KO, Kurz FT. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease. J Neuroradiol 2025; 52:101322. [PMID: 39894249 DOI: 10.1016/j.neurad.2025.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of brain physiology, particularly in waste clearance and fluid dynamics within the central nervous system. This pathway, essential for nutrient distribution and waste removal, operates predominantly during sleep and has been implicated in neurodegenerative diseases like Alzheimer's and Parkinson's. Recent advances in non-invasive MRI techniques, including diffusion tensor imaging along the perivascular space (DTI-ALPS), perivascular space (PVS) analysis, and free water (FW) indices, have improved our ability to study glymphatic function and its alterations in disease states. This review discusses the glymphatic system's ultrastructure, physiology, and the latest imaging methods to assess this critical pathway. We highlight how these non-invasive MRI techniques can enhance the understanding of glymphatic function in health and disease, with a focus on neurodegenerative conditions. By integrating insights from current research, this review underscores the diagnostic and therapeutic implications of glymphatic dysfunction. Understanding these mechanisms can pave the way for novel strategies to enhance waste clearance and improve neurological health, offering potential benefits for early diagnosis and intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniele Botta
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Ioana Hutuca
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Elyas El Ghoul
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Lukas Sveikata
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Felix T Kurz
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
2
|
Babin M, Golse M, Khaterchi M, Bapst B, Ancelet C, Nasser G, Benoudiba F. Perivascular enhancement pattern: Identification, diagnostic spectrum and practical approach - A pictorial review. J Neuroradiol 2025; 52:101242. [PMID: 39828213 DOI: 10.1016/j.neurad.2025.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Perivascular spaces (PVS) are fluid-filled structures that form the immediate peripheral environment of small cerebral vessels. They are a central component of the glymphatic system, which plays a crucial role in maintaining cerebral homeostasis. Their involvement in central nervous system diseases is currently a major focus of research, particularly in neuroimaging. Pathological enhancement of PVS on post-contrast MRI sequences creates a distinctive pattern due to their topography. As with other intracranial enhancement patterns, a differential diagnosis approach can be applied to perivascular enhancement (PVE). However, it is particularly challenging due to the rarity and complexity of the conditions involved. This article aims to facilitate the recognition of PVE pattern, to highlight the various causal conditions and to propose a practical diagnostic approach.
Collapse
Affiliation(s)
- Matthias Babin
- Department of Neuroradiology, Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.
| | - Marianne Golse
- Department of Neuroradiology, La Pitié-Salpêtrière Hospital, Paris, France
| | - Manel Khaterchi
- Department of Neuroradiology, Lariboisière Hospital, Paris, France
| | - Blanche Bapst
- Department of Neuroradiology, Henri Mondor Hospital, Créteil, France
| | - Claire Ancelet
- Department of Neuroradiology, Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Ghaidaa Nasser
- Department of Neuroradiology, Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Farida Benoudiba
- Department of Neuroradiology, Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Harrison DM, Sati P, Klawiter EC, Narayanan S, Bagnato F, Beck ES, Barker P, Calvi A, Cagol A, Donadieu M, Duyn J, Granziera C, Henry RG, Huang SY, Hoff MN, Mainero C, Ontaneda D, Reich DS, Rudko DA, Smith SA, Trattnig S, Zurawski J, Bakshi R, Gauthier S, Laule C. The use of 7T MRI in multiple sclerosis: review and consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Brain Commun 2024; 6:fcae359. [PMID: 39445084 PMCID: PMC11497623 DOI: 10.1093/braincomms/fcae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The use of ultra-high-field 7-Tesla (7T) MRI in multiple sclerosis (MS) research has grown significantly over the past two decades. With recent regulatory approvals of 7T scanners for clinical use in 2017 and 2020, the use of this technology for routine care is poised to continue to increase in the coming years. In this context, the North American Imaging in MS Cooperative (NAIMS) convened a workshop in February 2023 to review the previous and current use of 7T technology for MS research and potential future research and clinical applications. In this workshop, experts were tasked with reviewing the current literature and proposing a series of consensus statements, which were reviewed and approved by the NAIMS. In this review and consensus paper, we provide background on the use of 7T MRI in MS research, highlighting this technology's promise for identification and quantification of aspects of MS pathology that are more difficult to visualize with lower-field MRI, such as grey matter lesions, paramagnetic rim lesions, leptomeningeal enhancement and the central vein sign. We also review the promise of 7T MRI to study metabolic and functional changes to the brain in MS. The NAIMS provides a series of consensus statements regarding what is currently known about the use of 7T MRI in MS, and additional statements intended to provide guidance as to what work is necessary going forward to accelerate 7T MRI research in MS and translate this technology for use in clinical practice and clinical trials. This includes guidance on technical development, proposals for a universal acquisition protocol and suggestions for research geared towards assessing the utility of 7T MRI to improve MS diagnostics, prognostics and therapeutic efficacy monitoring. The NAIMS expects that this article will provide a roadmap for future use of 7T MRI in MS.
Collapse
Affiliation(s)
- Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, TN Valley Healthcare System, Nashville, TN 37212, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Calvi
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Duyn
- Advanced MRI Section, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, 4001 Basel, Switzerland
- Department of Neurology, University Hospital Basel, 4001 Basel, Switzerland
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, QC, Canada, H3A 2B4
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Cornelia Laule
- Radiology, Pathology and Laboratory Medicine, Physics and Astronomy, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada, BC V6T 1Z4
| |
Collapse
|
4
|
Zhao F, Xu K, Zhou Z, Yu J. Morphometric CT angiographic study of the SSS and its adjacent structures: A comparative analysis between elderly and nonelderly individuals of a Han Chinese population. Heliyon 2024; 10:e23609. [PMID: 38173530 PMCID: PMC10761763 DOI: 10.1016/j.heliyon.2023.e23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Objective The superior sagittal sinus (SSS) is an important structure, but few studies have analyzed it using computed tomography angiography (CTA). Methods This study was performed to examine the angiographic anatomy of the SSS and its adjacent structures using CTA in Han Chinese participants. According to age, participants were divided into elderly and nonelderly groups. The parameters of the SSS and adjacent structures were measured, recorded and analyzed statistically. Results A total of 500 Han Chinese participants were enrolled in this study, including 346 in the elderly group and 154 in the nonelderly group. In the elderly group, regarding inferior sagittal sinus (ISS) development, 187 ISSs were absent, 85 were visible, and 74 were clear. In the nonelderly group, 62 ISSs were absent, 54 were visible, and 38 were clear. In the elderly group, the Rolandic bridging vein diameter was 3.6 ± 0.8 mm; in the nonelderly group, the diameter was 3.9 ± 1.1 mm. The statistical results showed a difference in ISS development between the elderly and nonelderly groups (P < 0.05). The relationship of age with ISS development was assessed using linear regression analysis, and the results indicated that ISS became gradually occluded with age (P < 0.05). The statistical results also showed a difference in the Rolandic bridging vein diameter between the elderly and nonelderly groups (P < 0.05). The relationship of age with the Rolandic bridging vein diameter was assessed using linear regression analysis, and the results indicated that the Rolandic bridging vein tended to become thinner with age (P < 0.05). Conclusion This study found that more ISSs may become occluded and that the Rolandic bridging vein may become thinner with age. Other parameters of the SSS and its adjacent structures may not be affected by aging. In addition, our study also provided normal CTA parameters of the SSS and its adjacent structures in Han Chinese people.
Collapse
Affiliation(s)
- Fasheng Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Kan Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zibo Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Jinlu Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Zhao X, Zhou Y, Li Y, Huang S, Zhu H, Zhou Z, Zhu S, Zhu W. The asymmetry of glymphatic system dysfunction in patients with temporal lobe epilepsy: A DTI-ALPS study. J Neuroradiol 2023; 50:562-567. [PMID: 37301366 DOI: 10.1016/j.neurad.2023.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND PURPOSE While the occurrence of glymphatic system dysfunction has been observed in temporal lobe epilepsy (TLE), the potential asymmetry of this system has yet to be investigated in the TLE context. We aimed to investigate the glymphatic system function in both hemispheres and to analyze asymmetric features of the glymphatic system in TLE patients using diffusion tensor image analysis along the perivascular space (DTI-ALPS) method. MATERIALS AND METHODS 43 patients (left TLE (LTLE), n = 20; right TLE (RTLE), n = 23) and 39 healthy controls (HC) were enrolled in this study. The DTI-ALPS index was calculated for the left (left ALPS index) and right (right ALPS index) hemispheres respectively. An asymmetry index (AI) was calculated by AI = (Right - Left)/ [(Right + Left)/2] to represent the asymmetric pattern. Independent two sample t-test, two-sample paired t-test or one-way ANOVA with Bonferroni correction were conducted to compare the differences in ALPS indices and AI among the groups. RESULTS Both left ALPS index (p = 0.040) and right ALPS index (p = 0.001) of RTLE patients were significantly decreased, while only left ALPS index of LTLE patients (p = 0.005) was reduced. Compared to contralateral ALPS index, the ipsilateral ALPS index was significantly decreased in TLE (p = 0.008) and RTLE (p = 0.009) patients. Leftward asymmetry of the glymphatic system was found in HC (p = 0.045) and RTLE (p = 0.009) patients. The LTLE patients presented reduced asymmetric traits when compared to RTLE patients (p = 0.029). CONCLUSION The TLE patients exhibited altered ALPS indices, which could be triggered by glymphatic system dysfunction. Altered ALPS indices were more severe in ipsilateral than in the contralateral hemisphere. Moreover, LTLE and RTLE patients exhibited different change patterns of the glymphatic system. In addition, glymphatic system function presented asymmetric patterns in both normal adult brain and RTLE patients.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|