1
|
Yu J, Li J, Matei N, Wang W, Tang L, Pang J, Li X, Fang L, Tang J, Zhang JH, Yan M. Intranasal administration of recombinant prosaposin attenuates neuronal apoptosis through GPR37/PI3K/Akt/ASK1 pathway in MCAO rats. Exp Neurol 2024; 373:114656. [PMID: 38114054 PMCID: PMC10922973 DOI: 10.1016/j.expneurol.2023.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Studies have reported that Prosaposin (PSAP) is neuroprotective in cerebrovascular diseases. We hypothesized that PSAP would reduce infarct volume by attenuating neuronal apoptosis and promoting cell survival through G protein-coupled receptor 37(GPR37)/PI3K/Akt/ASK1 pathway in middle cerebral artery occlusion (MCAO) rats. Two hundred and thirty-five male and eighteen female Sprague-Dawley rats were used. Recombinant human PSAP (rPSAP) was administered intranasally 1 h (h) after reperfusion. PSAP small interfering ribonucleic acid (siRNA), GPR37 siRNA, and PI3K specific inhibitor LY294002 were administered intracerebroventricularly 48 h before MCAO. Infarct volume, neurological score, immunofluorescence staining, Western blot, Fluoro-Jade C (FJC) and TUNEL staining were examined. The expression of endogenous PSAP and GPR37 were increased after MCAO. Intranasal administration of rPSAP reduced brain infarction, neuronal apoptosis, and improved both short- and long-term neurological function. Knockdown of endogenous PSAP aggravated neurological deficits. Treatment with exogenous rPSAP increased PI3K expression, Akt and ASK1 phosphorylation, and Bcl-2 expression; phosphorylated-JNK and Bax levels were reduced along with the number of FJC and TUNEL positive neurons. GPR37 siRNA and LY294002 abolished the anti-apoptotic effect of rPSAP at 24 h after MCAO. In conclusion, rPSAP attenuated neuronal apoptosis and improved neurological function through GPR37/PI3K/Akt/ASK1 pathway after MCAO in rats. Therefore, further exploration of PSAP as a potential treatment option in ischemic stroke is warranted.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jinlan Li
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nathanael Matei
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA 90007, USA
| | - Wenna Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Lihui Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jinwei Pang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Lili Fang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA.
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Meyer RC, Giddens MM, Coleman BM, Hall RA. The protective role of prosaposin and its receptors in the nervous system. Brain Res 2014; 1585:1-12. [PMID: 25130661 DOI: 10.1016/j.brainres.2014.08.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.
Collapse
Affiliation(s)
- Rebecca C Meyer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Brilee M Coleman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
3
|
GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc Natl Acad Sci U S A 2013; 110:9529-34. [PMID: 23690594 DOI: 10.1073/pnas.1219004110] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both receptors and activated signaling in a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of cells transfected with GPR37 or GPR37L1 induced the phosphorylation of ERK in a pertussis toxin-sensitive manner, stimulated (35)S-GTPγS binding, and promoted the inhibition of forskolin-stimulated cAMP production. Because prosaptide is the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also known as sulfated glycoprotein-1), we purified full-length prosaposin and found that it also stimulated GPR37 and GPR37L1 signaling. Moreover, both prosaptide and prosaposin were found to protect primary astrocytes against oxidative stress, with these protective effects being attenuated by siRNA-mediated knockdown of endogenous astrocytic GPR37 or GPR37L1. These data reveal that GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.
Collapse
|
4
|
Wu Y, Wang XF, Mo XA, Sun HB, Li JM, Zeng Y, Lin T, Yuan J, Xi ZQ, Zhu X, Zheng JO. Expression of laminin β1 in hippocampi of patients with intractable epilepsy. Neurosci Lett 2008; 443:160-4. [DOI: 10.1016/j.neulet.2008.07.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 01/25/2023]
|