1
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagmin-like proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Sci 2024; 33:e4850. [PMID: 38038838 PMCID: PMC10731544 DOI: 10.1002/pro.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | - Sherleen Tran
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | | - Hai Lin
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | |
Collapse
|
2
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A Conserved Electrostatic Membrane-Binding Surface in Synaptotagmin-Like Proteins Revealed Using Molecular Phylogenetic Analysis and Homology Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548768. [PMID: 37502952 PMCID: PMC10369986 DOI: 10.1101/2023.07.13.548768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver
| | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver
| | | |
Collapse
|
3
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
4
|
Bustos MA, Lucchesi O, Ruete MC, Tomes CN. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides. Cell Signal 2018; 44:72-81. [PMID: 29337043 DOI: 10.1016/j.cellsig.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27 is required for that of Rab3 and Rap1; and the connection between Epac and Rab27 and between Rab27 and the configuration of the SNARE complex. Moreover, we present direct evidence that Rab27A's lipid modification, and activation/inactivation status correlate with its stimulatory or inhibitory roles in exocytosis.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - María C Ruete
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina.
| |
Collapse
|
5
|
Lyakhova TA, Knight JD. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids. Chem Phys Lipids 2013; 182:29-37. [PMID: 24184645 DOI: 10.1016/j.chemphyslip.2013.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/19/2013] [Indexed: 11/30/2022]
Abstract
Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.
Collapse
Affiliation(s)
- Tatyana A Lyakhova
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA.
| |
Collapse
|
6
|
Goyal RK, Chaudhury A. Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 2013; 176:11-31. [PMID: 23535140 PMCID: PMC3677731 DOI: 10.1016/j.autneu.2013.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors.
Collapse
Affiliation(s)
- Raj K Goyal
- Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA.
| | | |
Collapse
|
7
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Feng W, Liang T, Yu J, Zhou W, Zhang Y, Wu Z, Xu T. RAB-27 and its effector RBF-1 regulate the tethering and docking steps of DCV exocytosis in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2012; 55:228-35. [PMID: 22527519 DOI: 10.1007/s11427-012-4296-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/18/2012] [Indexed: 10/28/2022]
Abstract
The molecular mechanisms by which dense core vesicles (DCVs) translocate, tether, dock and prime are poorly understood. In this study, Caenorhabditis elegans was used as a model organism to study the function of Rab proteins and their effectors in DCV exocytosis. RAB-27/AEX-6, but not RAB-3, was found to be required for peptide release from neurons. By analyzing the movement of DCVs approaching the plasma membrane using total internal reflection fluorescence microscopy, we demonstrated that RAB-27/AEX-6 is involved in the tethering of DCVs and that its effector rabphilin/RBF-1 is required for the initial tethering and subsequent stabilization by docking.
Collapse
Affiliation(s)
- WanJuan Feng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Involvement of Synaptic Protein Munc18 in the Process of Release of Catecholamines by Chromaffin Cells of the Rat Adrenal Gland. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|