1
|
Majka P, Rosa MGP, Bai S, Chan JM, Huo BX, Jermakow N, Lin MK, Takahashi YS, Wolkowicz IH, Worthy KH, Rajan R, Reser DH, Wójcik DK, Okano H, Mitra PP. Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Struct Funct 2018; 224:111-131. [PMID: 30288557 PMCID: PMC6373361 DOI: 10.1007/s00429-018-1764-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
Until the late twentieth century, it was believed that different sensory modalities were processed by largely independent pathways in the primate cortex, with cross-modal integration only occurring in specialized polysensory areas. This model was challenged by the finding that the peripheral representation of the primary visual cortex (V1) receives monosynaptic connections from areas of the auditory cortex in the macaque. However, auditory projections to V1 have not been reported in other primates. We investigated the existence of direct interconnections between V1 and auditory areas in the marmoset, a New World monkey. Labelled neurons in auditory cortex were observed following 4 out of 10 retrograde tracer injections involving V1. These projections to V1 originated in the caudal subdivisions of auditory cortex (primary auditory cortex, caudal belt and parabelt areas), and targeted parts of V1 that represent parafoveal and peripheral vision. Injections near the representation of the vertical meridian of the visual field labelled few or no cells in auditory cortex. We also placed 8 retrograde tracer injections involving core, belt and parabelt auditory areas, none of which revealed direct projections from V1. These results confirm the existence of a direct, nonreciprocal projection from auditory areas to V1 in a different primate species, which has evolved separately from the macaque for over 30 million years. The essential similarity of these observations between marmoset and macaque indicate that early-stage audiovisual integration is a shared characteristic of primate sensory processing.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
| | - Marcello G P Rosa
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Shi Bai
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Jonathan M Chan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Bing-Xing Huo
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Meng K Lin
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Yeonsook S Takahashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
| | - Ianina H Wolkowicz
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Ramesh Rajan
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - David H Reser
- School of Rural Health, Monash University, Churchill, VIC, 3842, Australia
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Partha P Mitra
- Monash University Node, Australian Research Council, Centre of Excellence for Integrative Brain Function, Clayton, VIC, 3800, Australia.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, 351-0106, Japan.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
2
|
Christison-Lagay KL, Cohen YE. The Contribution of Primary Auditory Cortex to Auditory Categorization in Behaving Monkeys. Front Neurosci 2018; 12:601. [PMID: 30210282 PMCID: PMC6123543 DOI: 10.3389/fnins.2018.00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
The specific contribution of core auditory cortex to auditory perception –such as categorization– remains controversial. To identify a contribution of the primary auditory cortex (A1) to perception, we recorded A1 activity while monkeys reported whether a temporal sequence of tone bursts was heard as having a “small” or “large” frequency difference. We found that A1 had frequency-tuned responses that habituated, independent of frequency content, as this auditory sequence unfolded over time. We also found that A1 firing rate was modulated by the monkeys’ reports of “small” and “large” frequency differences; this modulation correlated with their behavioral performance. These findings are consistent with the hypothesis that A1 contributes to the processes underlying auditory categorization.
Collapse
Affiliation(s)
- Kate L Christison-Lagay
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yale E Cohen
- Departments of Otorhinolaryngology, Neuroscience, and Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging. eNeuro 2018; 5:eN-NWR-0078-18. [PMID: 29736410 PMCID: PMC5937112 DOI: 10.1523/eneuro.0078-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5-16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions.
Collapse
|
4
|
Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey. J Neurosci 2015; 35:4140-50. [PMID: 25762661 DOI: 10.1523/jneurosci.3556-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas.
Collapse
|
5
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 2012; 295:800-21. [PMID: 22461313 DOI: 10.1002/ar.22451] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 03/01/2012] [Indexed: 11/12/2022]
Abstract
The current working model of primate auditory cortex is constructed from a number of studies of both new and old world monkeys. It includes three levels of processing. A primary level, the core region, is surrounded both medially and laterally by a secondary belt region. A third level of processing, the parabelt region, is located lateral to the belt. The marmoset monkey (Callithrix jacchus jacchus) has become an important model system to study auditory processing, but its anatomical organization has not been fully established. In previous studies, we focused on the architecture and connections of the core and medial belt areas (de la Mothe et al., 2006a, J Comp Neurol 496:27-71; de la Mothe et al., 2006b, J Comp Neurol 496:72-96). In this study, the corticocortical connections of the lateral belt and parabelt were examined in the marmoset. Tracers were injected into both rostral and caudal portions of the lateral belt and parabelt. Both regions revealed topographic connections along the rostrocaudal axis, where caudal areas of injection had stronger connections with caudal areas, and rostral areas of injection with rostral areas. The lateral belt had strong connections with the core, belt, and parabelt, whereas the parabelt had strong connections with the belt but not the core. Label in the core from injections in the parabelt was significantly reduced or absent, consistent with the idea that the parabelt relies mainly on the belt for its cortical input. In addition, the present and previous studies indicate hierarchical principles of anatomical organization in the marmoset that are consistent with those observed in other primates.
Collapse
Affiliation(s)
- Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee 37209, USA
| | | | | | | |
Collapse
|
6
|
Kuśmierek P, Ortiz M, Rauschecker JP. Sound-identity processing in early areas of the auditory ventral stream in the macaque. J Neurophysiol 2011; 107:1123-41. [PMID: 22131372 DOI: 10.1152/jn.00793.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Auditory cortical processing is thought to be accomplished along two processing streams. The existence of a posterior/dorsal stream dealing, among others, with the processing of spatial aspects of sound has been corroborated by numerous studies in several species. An anterior/ventral stream for the processing of nonspatial sound qualities, including the identification of sounds such as species-specific vocalizations, has also received much support. Originally discovered in anterolateral belt cortex, most recent work on the anterior/ventral pathway has been performed on far anterior superior temporal (ST) areas and on ventrolateral prefrontal cortex (VLPFC). Regions of the anterior/ventral stream near its origin in early auditory areas have been less explored. In the present study, we examined three early auditory regions with different anteroposterior locations (caudal, middle, and rostral) in awake rhesus macaques. We analyzed how well classification based on sound-evoked activity patterns of neuronal populations replicates the original stimulus categories. Of the three regions, the rostral region (rR), which included core area R and medial belt area RM, yielded the greatest classification success across all stimulus classes or between classes of natural sounds. Starting from ∼80 ms past stimulus onset, clustering based on the population response in rR became clearly more successful than clustering based on responses from any other region. Our study demonstrates that specialization for sound-identity processing can be found very early in the auditory ventral stream. Furthermore, the fact that this processing develops over time can shed light on underlying mechanisms. Finally, we show that population analysis is a more sensitive method for revealing functional specialization than conventional types of analysis.
Collapse
Affiliation(s)
- Paweł Kuśmierek
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia 20057, USA.
| | | | | |
Collapse
|