1
|
Batissoco AC, Cruz DB, Alegria TGP, Kobayashi G, Oiticica J, Soares LE, Passos-Bueno MR, Haddad LA, Mingroni RC. GJB2 c.35del variant up-regulates GJA1 gene expression and affects differentiation of human stem cells. Genet Mol Biol 2024; 47:e20230170. [PMID: 38626573 PMCID: PMC11021044 DOI: 10.1590/1678-4685-gmb-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/17/2024] [Indexed: 04/18/2024] Open
Abstract
Pathogenic DNA alterations in GJB2 are present in nearly half of non-syndromic hearing loss cases with autosomal recessive inheritance. The most frequent variant in GJB2 causing non-syndromic hearing loss is the frameshifting c.35del. GJB2 encodes Cx26, a protein of the connexin family that assembles hemichannels and gap junctions. The expression of paralogous proteins is believed to compensate for the loss of function of specific connexins. As Cx26 has been involved in cell differentiation in distinct tissues, we employed stem cells derived from human exfoliated deciduous teeth (SHEDs), homozygous for the c.35del variant, to assess GJB2 roles in stem cell differentiation and the relationship between its loss of function and the expression of paralogous genes. Primary SHED cultures from patients and control individuals were compared. SHEDs from patients had significantly less GJB2 mRNA and increased amount of GJA1 (Cx43), but not GJB6 (Cx30) or GJB3 (Cx31) mRNA. In addition, they presented higher induced differentiation to adipocytes and osteocytes but lower chondrocyte differentiation. Our results suggest that GJA1 increased expression may be involved in functional compensation for GJB2 loss of function in human stem cells, and it may explain changes in differentiation properties observed in SHEDs with and without the c.35del variant.
Collapse
Affiliation(s)
- Ana Carla Batissoco
- Universidade de São Paulo (USP), Faculdade de Medicina (FM), Hospital das Clínicas (HC), Laboratório de Investigação Médica de Otorrinolaringologia (LIM32), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), Faculdade de Medicina (FM), Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Dayane Bernardino Cruz
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Thiago Geronimo Pires Alegria
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Gerson Kobayashi
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Jeanne Oiticica
- Universidade de São Paulo (USP), Faculdade de Medicina (FM), Hospital das Clínicas (HC), Laboratório de Investigação Médica de Otorrinolaringologia (LIM32), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), Faculdade de Medicina (FM), Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Luis Eduardo Soares
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Maria Rita Passos-Bueno
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Luciana Amaral Haddad
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Regina Célia Mingroni
- Universidade de São Paulo (USP), Instituto de Biociências (IB), Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco (HUG-CELL), Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Edvardsson Rasmussen J, Lundström P, Eriksson PO, Rask-Andersen H, Liu W, Laurell G. The Acute Effects of Furosemide on Na-K-Cl Cotransporter-1, Fetuin-A and Pigment Epithelium-Derived Factor in the Guinea Pig Cochlea. Front Mol Neurosci 2022; 15:842132. [PMID: 35392272 PMCID: PMC8981210 DOI: 10.3389/fnmol.2022.842132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Furosemide is a loop diuretic used to treat edema; however, it also targets the Na-K-Cl cotransporter-1 (NKCC1) in the inner ear. In very high doses, furosemide abolishes the endocochlear potential (EP). The aim of the study was to gain a deeper understanding of the temporal course of the acute effects of furosemide in the inner ear, including the protein localization of Fetuin-A and PEDF in guinea pig cochleae. Material and Method Adult guinea pigs were given an intravenous injection of furosemide in a dose of 100 mg per kg of body weight. The cochleae were studied using immunohistochemistry in controls and at four intervals: 3 min, 30 min, 60 min and 120 min. Also, cochleae of untreated guinea pigs were tested for Fetuin-A and PEDF mRNA using RNAscope® technology. Results At 3 min, NKCC1 staining was abolished in the type II fibrocytes in the spiral ligament, followed by a recovery period of up to 120 min. In the stria vascularis, the lowest staining intensity of NKCC1 presented after 30 min. The spiral ganglion showed a stable staining intensity for the full 120 min. Fetuin-A protein and mRNA were detected in the spiral ganglion type I neurons, inner and outer hair cells, pillar cells, Deiters cells and the stria vascularis. Furosemide induced an increased staining intensity of Fetuin-A at 120 min. PEDF protein and mRNA were found in the spiral ganglia type I neurons, the stria vascularis, and in type I and type II fibrocytes of the spiral ligament. PEDF protein staining intensity was high in the pillar cells in the organ of Corti. Furosemide induced an increased staining intensity of PEDF in type I neurons and pillar cells after 120 min. Conclusion The results indicate rapid furosemide-induced changes of NKCC1 in the type II fibrocytes. This could be part of the mechanism that causes reduction of the EP within minutes after high dose furosemide injection. Fetuin-A and PEDF are present in many cells of the cochlea and probably increase after furosemide exposure, possibly as an otoprotective response.
Collapse
|
3
|
Shi X, Zhang Y, Qiu S, Zhuang W, Yuan N, Sun T, Gao J, Qiao Y, Liu K. A Novel GJB2 compound heterozygous mutation c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) causes sensorineural hearing loss in a Chinese family. J Clin Lab Anal 2018; 32:e22444. [PMID: 29665173 DOI: 10.1002/jcla.22444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/07/2018] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To investigate whether a novel compound heterozygous mutations c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) in GJB2 result in hearing loss. METHODS Allele-specific PCR-based universal array (ASPUA) screening and sequence analysis were applied to identify these mutations. 3D model was built to perform molecular dynamics (MD) simulation to verify the susceptibility of the mutations. Furthermore, WT- and Mut-GJB2 DNA fragments, containing the mutation of c.257C>G and c.176del16 were respectively cloned and transfected into HEK293 and spiral ganglion neuron cell (SGNs) by lenti-virus delivery system to indicate the subcellular localization of the WT- and Mut-CX26 protein. RESULTS A novel compound heterozygous mutation c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) in GJB2 was identified in a Chinese family, in which 4 siblings with profound hearing loss, but the fifth child is normal. By ASPUA screening and sequencing, a compound heterozygote mutations in GJB2 c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) were identified in these four deaf children, each of the mutated GJB2 gene were inherited from their parents. There is no mutation of GJB2 gene identified in the normal child. Besides, the compound heterozygous mutation GJB2 c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) could lead to the alterations of the subcellular localization of each corresponding mutated CX26 protein and could cause the hearing loss, which has been predicted by MD simulation and verified in both 293T and SGNs cell line. CONCLUSION The c.257C>G (p.T86R)/c.176del16 (p.G59A fs*18) compound mutations in GJB2 detected in this study are novel, and which may be associated with hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Xi Shi
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Otolaryngology-Head and neck surgery, The first Hospital of JiLin University, Changchun, China
| | - Shiwei Qiu
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Wei Zhuang
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Yuan
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Tiantian Sun
- The Institute of Audiology and Balance science of Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuehua Qiao
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Delpire E, Gagnon KB. Na + -K + -2Cl - Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia. Compr Physiol 2018; 8:871-901. [PMID: 29687903 DOI: 10.1002/cphy.c170018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two genes encode the Na+ -K+ -2Cl- cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na+ , 1K+ , and 2Cl- across the plasma membrane of cells. Na+ -K+ -2Cl- cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na+ /K+ pump. In many cells, NKCC1 accumulates Cl- above its electrochemical potential equilibrium, thereby facilitating Cl- channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca2+ channels, leading to Ca2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl- conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl- . In combination with the Na+ /K+ pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl- -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K+ -driven fluid secretion in inner ear, and possibly in Na+ -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na+ /K+ pump participates in reabsorbing 30% of the glomerular-filtered Na+ . Overall, many critical physiological functions are maintained by the activity of the two Na+ -K+ -2Cl- cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Kenneth B Gagnon
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Keystone, USA
| |
Collapse
|