1
|
Sharma V, Singh TG, Mannan A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem Res 2022; 47:2173-2186. [PMID: 35596882 DOI: 10.1007/s11064-022-03620-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is a leading cause of death in the globe, with a large societal cost. Deprivation of blood flow, together with consequent glucose and oxygen shortage, activates a variety of pathways that result in permanent brain damage. As a result, ischemia raises energy demand, which is linked to significant alterations in brain energy metabolism. Even at the low glucose levels reported in plasma during ischemia, glucose transport activity may adjust to assure the supply of glucose to maintain normal cellular function. Glucose transporters in the brain are divided into two groups: sodium-independent glucose transporters (GLUTs) and sodium-dependent glucose cotransporters (SGLTs).This review assess the GLUT structure, expression, regulation, pathobiology of GLUT in cerebral ischemia and regulators of GLUT and it also provides the synopsis of the literature exploring the relationship between GLUT and the various downstream signalling pathways for e.g., AMP-activated protein kinase (AMPK), CREB (cAMP response element-binding protein), Hypoxia-inducible factor 1 (HIF)-1, Phosphatidylinositol 3-kinase (PI3-K), Mitogen-activated protein kinase (MAPK) and adenylate-uridylate-rich elements (AREs). Therefore, the aim of the present review was to elaborate the therapeutic implications of GLUT in the cerebral ischemia.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India.
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| |
Collapse
|
2
|
Jiang M, Chen X, Zhang L, Liu W, Yu X, Wang Z, Zheng M. Electroacupuncture suppresses glucose metabolism and GLUT-3 expression in medial prefrontal cortical in rats with neuropathic pain. Biol Res 2021; 54:24. [PMID: 34362470 PMCID: PMC8344173 DOI: 10.1186/s40659-021-00348-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence has demonstrated that the electroacupuncture (EA) stimulation could effectively alleviate neuropathic pain. The medial prefrontal cortex (mPFC) is a vital part of the cortical representation of pain in the brain, and its glucose metabolism is mostly affected in the progression of pain. However, the central mechanism of EA analgesia remains unclear. Methods Fifty-four male SD rats were equally randomized into sham surgery (Sham) group, chronic constriction injury (CCI) group and EA stimulation (EA) group. The CCI model, involving ligature of the right sciatic nerve, was established in all animals except the Sham group. EA stimulation was applied on the right side acupoints of Huantiao (GB30) and Yanglingquan (GB34) in the EA group. Paw withdrawal threshold (PWT) and paw thermal withdrawal latency (PWL) were measured. The 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) was used to evaluate glucose metabolism changes in the mPFC. The expression of glucose transporter 3 (GLUT-3) in the mPFC was determined by immune histochemistry and ELISA. Results Comparing with CCI groups, EA treatment was obviously reversed CCI-induced mechanical allodynia (P < 0.01), thermal hyperalgesia (P < 0.01) and the increase of glucose metabolism in the left mPFC (P < 0.05). Furthermore, EA treatment significantly decreased the protein expression of GLUT-3 in the left mPFC (P < 0.01). Conclusions Our results indicate that EA analgesia effect may be related to suppressing the glucose metabolism and GLUT-3 expression in the mPFC. This study could provide a potential insight into the central mechanisms involved in the analgesic effect of EA.
Collapse
Affiliation(s)
- Menghong Jiang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaomei Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Liangping Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Weiting Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiangmei Yu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Zhifu Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China. .,Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Chinese Medicine Affiliated Rehabilitation Hospital, Fuzhou, 350122, Fujian, China.
| | - Meifeng Zheng
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
3
|
Voss CM, Andersen JV, Jakobsen E, Siamka O, Karaca M, Maechler P, Waagepetersen HS. AMP-activated protein kinase (AMPK) regulates astrocyte oxidative metabolism by balancing TCA cycle dynamics. Glia 2020; 68:1824-1839. [PMID: 32092215 DOI: 10.1002/glia.23808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is an important energy sensor located in cells throughout the human body. From the periphery, AMPK is known to be a metabolic master switch controlling the use of energy fuels. The energy sensor is activated when the energy status of the cell is low, initiating energy-producing pathways and deactivating energy-consuming pathways. All brain cells are crucially dependent on energy production for survival, and the availability of energy substrates must be closely regulated. Intriguingly, the role of AMPK in the regulation of brain cell metabolism has been sparsely investigated, particularly in astrocytes. By investigating metabolism of 13 C-labeled energy substrates in acutely isolated hippocampal slices and cultured astrocytes, with subsequent mass spectrometry analysis, we here show that activation of AMPK increases glycolysis as well as the capacity of the TCA cycle, that is, anaplerosis, through the activity of pyruvate carboxylase (PC) in astrocytes. In addition, we demonstrate that AMPK activation leads to augmented astrocytic glutamate oxidation via pyruvate recycling (i.e., cataplerosis). This regulatory mechanism induced by AMPK activation is mediated via glutamate dehydrogenase (GDH) shown in a CNS-specific GDH knockout mouse. Collectively, these findings demonstrate that AMPK regulates TCA cycle dynamics in astrocytes via PC and GDH activity. AMPK functionality has been shown to be hampered in Alzheimer's and Parkinson's disease and our findings may therefore add to the toolbox for discovery of new metabolic drug targets.
Collapse
Affiliation(s)
- Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Siamka
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melis Karaca
- Department of Cell Physiology and Metabolism, CMU, University of Geneva, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, CMU, University of Geneva, Geneva, Switzerland
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Lechermeier CG, Zimmer F, Lüffe TM, Lesch KP, Romanos M, Lillesaar C, Drepper C. Transcript Analysis of Zebrafish GLUT3 Genes, slc2a3a and slc2a3b, Define Overlapping as Well as Distinct Expression Domains in the Zebrafish ( Danio rerio) Central Nervous System. Front Mol Neurosci 2019; 12:199. [PMID: 31507372 PMCID: PMC6718831 DOI: 10.3389/fnmol.2019.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023] Open
Abstract
The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington's and Alzheimer's diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders.
Collapse
Affiliation(s)
- Carina G Lechermeier
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Frederic Zimmer
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Teresa M Lüffe
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Marcel Romanos
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Christina Lillesaar
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Carsten Drepper
- Child and Adolescent Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Simeng Wang
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
6
|
Decrease in glucose transporter 1 levels and translocation of glucose transporter 3 in the dentate gyrus of C57BL/6 mice and gerbils with aging. Lab Anim Res 2018; 34:58-64. [PMID: 29937912 PMCID: PMC6010402 DOI: 10.5625/lar.2018.34.2.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
In the present study, we compared the cell-specific expression and changes protein levels in the glucose transporters (GLUTs) 1 and 3, the major GLUTs in the mouse and gerbil brains using immunohistochemistry and Western blot analysis. In both mouse and gerbils, GLUT1 immunoreactivity was mainly found in the blood vessels in the dentate gyrus, while GLUT3 immunoreactivity was detected in the subgranular zone and the molecular layer of the dentate gyrus. GLUT1-immunoreactivity in blood vessels and GLUT1 protein levels were significantly decreased with age in the mice and gerbils, respectively. In addition, few GLUT3-immunoreactive cells were found in the subgranular zone in aged mice and gerbils, but GLUT3-immunoreactivity was abundantly found in the polymorphic layer of dentate gyrus in mice and gerbils with a dot-like pattern. Based on the double immunofluorescence study, GLUT3-immunoreactive structures in gerbils were localized in the glial fibrillary acidic protein-immunoreactive astrocytes in the dentate gyrus. Western blot analysis showed that GLUT3 expression in the hippocampal homogenates was slightly, although not significantly, decreased with age in mice and gerbils, respectively. These results indicate that the reduction in GLUT1 in the blood vessels of dentate gyrus and GLUT3 in the subgranular zone of dentate gyrus may be associated with the decrease in uptake of glucose into brain and neuroblasts in the dentate gyrus. In addition, the expression of GLUT3 in the astrocytes in polymorphic layer of dentate gyrus may be associated with metabolic changes in glucose in aged hippocampus.
Collapse
|
7
|
Gutiérrez Aguilar GF, Alquisiras-Burgos I, Espinoza-Rojo M, Aguilera P. Glial Excitatory Amino Acid Transporters and Glucose Incorporation. ADVANCES IN NEUROBIOLOGY 2017; 16:269-282. [PMID: 28828615 DOI: 10.1007/978-3-319-55769-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Excitatory amino acid transporters (EAATs) expressed in astrocytes remove the glutamate released by neurons in and around the synaptic cleft. In this manner, astrocytes preserve the signaling functions mediated by glutamate on synapses and prevent excitotoxicity. Additionally, EAAT activation stimulates glucose utilization in astrocytes, linking neuronal activity with astrocyte metabolism. In this chapter, we briefly review the characteristics of the EAATs and the glucose transporters (GLUTs) expressed in the brain. Thereafter, we focus on the effect of EAATs activation and its association with glucose utilization in astrocytes, specifically addressing the role played by Na+ and Ca2+ ions. Next, we analyze evidence that proposes mechanisms by which the activity of GLUTs could be modulated after EAAT activation (e.g., kinases altering GLUTs traffic to cell membrane). Finally, we analyzed the current knowledge on EAAT function during energy deficiency as a possible inducer of GLUT expression to prevent neuronal damage.
Collapse
Affiliation(s)
- Germán Fernando Gutiérrez Aguilar
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México
| | - Ivan Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39087, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México.
| |
Collapse
|
8
|
Tamrakar P, Briski KP. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling. Brain Res Bull 2014; 110:47-53. [PMID: 25497905 DOI: 10.1016/j.brainresbull.2014.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/16/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022]
Abstract
Recent work challenges the conventional notion that metabolic monitoring in the brain is the exclusive function of neurons. This study investigated the hypothesis that hypothalamic astrocytes express the ultra-sensitive energy gauge adenosine 5'-monophosphate-activated protein kinase (AMPK), and that the ovarian hormone estradiol (E) controls activation of this sensor by insulin-induced hypoglycemia (IIH). E- or oil (O)-implanted ovariectomized (OVX) rats were pretreated by caudal fourth ventricular administration of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) prior to sc insulin or vehicle injection. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial (VMH), arcuate (ARH), and paraventricular (PVH) nuclei and the lateral hypothalamic area (LHA), and pooled within each site for Western blot analysis of AMPK and phosphoAMPK (pAMPK) protein expression. In the VMH, baseline astrocyte AMPK and pAMPK levels were respectively increased or decreased in OVX+E versus OVX+O; these profiles did not differ between E and O rats in other hypothalamic loci. In E animals, astrocyte AMPK protein was reduced [VMH] or augmented [PVH; LHA] in response to either 6-OHDA or IIH. IIH increased astrocyte pAMPK expression in each structure in vehicle-, but not 6-OHDA-pretreated E rats. Results provide novel evidence for hypothalamic astrocyte AMPK expression and hindbrain catecholamine-dependent activation of this cell-specific sensor by hypoglycemia in the presence of estrogen. Further research is needed to determine the role of astrocyte AMPK in reactivity of these glia to metabolic imbalance and contribution to restoration of neuro-metabolic stability.
Collapse
Affiliation(s)
- Pratistha Tamrakar
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|