1
|
Koshiba M, Watarai-Senoo A, Karino G, Ozawa S, Kamei Y, Honda Y, Tanaka I, Kodama T, Usui S, Tokuno H. A Susceptible Period of Photic Day-Night Rhythm Loss in Common Marmoset Social Behavior Development. Front Behav Neurosci 2021; 14:539411. [PMID: 33603653 PMCID: PMC7884770 DOI: 10.3389/fnbeh.2020.539411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
The prevalence of neurodevelopmental psychiatric disorders such as pervasive developmental disorders is rapidly increasing worldwide. Although these developmental disorders are known to be influenced by an individual’s genetic background, the potential biological responses to early life’s environmental exposure to both physical and psychological factors must also be considered. Many studies have acknowledged the influence of shorter time for rest at night and the simultaneous occurrence of various kinds of complications involving developmental disorders. In a prior study, we examined how a common marmoset’s (Callithrix jacchus) psychosocial development was affected when it was reared under constant daylight from birth and then reared individually by humans nursing them under constant light (LL) during their juvenile development stages. The behaviors of these marmosets were compared with those of normal day-night cycle (LD) marmosets using a multivariate analysis based on principal component analysis (PCA). That study found that LL marmosets relatively elicited egg-like calls (Ecall) and side-to-side shakes of the upper body with rapid head rotation through adulthood frequently. Based on the PCA, these behaviors were interpreted as “alert” or “hyperactive” states. However, we did not clarify susceptible periods of the photic rhythm loss experience and the psychological development output. In this study we summarize the following studies in our model animal colonies involving 30 animals (11 female, 19 males) to further explore critical age states of inquiry about each social behavior profiling. We compared social behaviors of three age stages, juvenile, adolescent and young adult equivalent to one another in four LL experience conditions, LL (postnatal day (P) 0 to around 150), Middle (P60–149, 90 days), Late (P150–239, 90 days), and LD (no experience). In the most representative 1st and 2nd principal component scores, the shifting to higher frequency of alert behaviors developed at the adult stage in LL, Middle, then Late in turn. The no LL experience group, LD, generally featured higher frequency of local preference of high position compared to LL experience present groups, in adulthood. This limited model primate study might inspire different developmental age sensitive mechanisms of neuronal network to control socio-emotional functions by utilizing the multivariate visualization method, BOUQUET. This study could potentially contribute to nurturing educational designs for social developmental disorders.
Collapse
Affiliation(s)
- Mamiko Koshiba
- Engineering Department, Yamaguchi University, Ube City, Japan.,Pediatrics, Saitama Medical University, Saitama, Japan.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | - Genta Karino
- Pediatrics, Saitama Medical University, Saitama, Japan
| | - Shimpei Ozawa
- Pediatrics, Saitama Medical University, Saitama, Japan
| | - Yoshimasa Kamei
- Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Yoshiko Honda
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Ikuko Tanaka
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Tohru Kodama
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Setsuo Usui
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Hironobu Tokuno
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
2
|
Karino G, Senoo A, Kunikata T, Kamei Y, Yamanouchi H, Nakamura S, Shukuya M, Colman RJ, Koshiba M. Inexpensive Home Infrared Living/Environment Sensor with Regional Thermal Information for Infant Physical and Psychological Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186844. [PMID: 32961676 PMCID: PMC7559736 DOI: 10.3390/ijerph17186844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
The use of home-based image sensors for biological and environmental monitoring provides novel insight into health and development but it is difficult to evaluate people during their normal activities in their home. Therefore, we developed a low-cost infrared (IR) technology-based motion, location, temperature and thermal environment detection system that can be used non-invasively for long-term studies in the home environment. We tested this technology along with the associated analysis algorithm to visualize the effects of parental care and thermal environment on developmental state change in a non-human primate model, the common marmoset (Callithrix jacchus). To validate this system, we first compared it to a manual analysis technique and we then assessed the development of circadian rhythms in common marmosets from postnatal day 15–45. The semi-automatically tracked biological indices of locomotion velocity (BV) and body surface temperature (BT) and the potential psychological index of place preference toward the door (BD), showed age-dependent shifts in circadian phase patterns. Although environmental variables appeared to affect circadian rhythm development, principal component analysis and signal superimposing imaging methods revealed a novel phasic pattern of BD-BT correlation day/night switching in animals older than postnatal day 38 (approximately equivalent to one year of age in humans). The origin of this switch was related to earlier development of body temperature (BT) rhythms and alteration of psychological behavior rhythms (BD) around earlier feeding times. We propose that this cost-effective, inclusive sensing and analytic technique has value for understanding developmental care conditions for which continual home non-invasive monitoring would be beneficial and further suggest the potential to adapt this technique for use in humans.
Collapse
Affiliation(s)
- Genta Karino
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Aya Senoo
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Tetsuya Kunikata
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama 350-0495, Japan;
| | - Hideo Yamanouchi
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Shun Nakamura
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Masanori Shukuya
- Faculty of Environmental Studies Department of Restoration Ecology and Built Environment, Tokyo City University, Kanagawa 224-8551, Japan;
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
- Department of Cell & Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Correspondence: (R.J.C.); (M.K.)
| | - Mamiko Koshiba
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
- Correspondence: (R.J.C.); (M.K.)
| |
Collapse
|
3
|
Elderly Body Movement Alteration at 2nd Experience of Digital Art Installation with Cognitive and Motivation Scores. J 2020. [DOI: 10.3390/j3020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The prevalence of advanced medical treatment has led to global population aging, resulting in increased numbers of dementia patients. One of the most intractable symptoms of dementia is apathy, or lack of interest and enthusiasm, which can accompany memory and cognitive deterioration. Development of a novel method to ameliorate apathy is desirable. In this feasibility trial, we propose a series of digital art installations as a candidate dementia intervention approach. Seven, three-minute scenes of digital images and sounds were presented to visitors either passively or in response to their reactions (motion and sound). We evaluated the potential of this application as an intervention against apathy in an elderly living home. We collected the dementia global standard Mini-Mental State Examination (MMSE) and questionnaire scores of sensory pleasure and motivation along with behavioral motion data in twenty participants. We further compared responses between the first and second experiences in the thirteen participants that were present for both days. Overall, we found a significant increase in participants’ motivation. In these subjects, head and right hand motion increased over different scenes and MMSE degrees, but was most significant during passive scenes. Despite a small number of subjects and limited evaluations, this new digital art technology holds promise as an apathy intervention in the elderly and can be improved with use of wearable motion sensors.
Collapse
|
4
|
Shiba Y, Oikonomidis L, Sawiak S, Fryer TD, Hong YT, Cockcroft G, Santangelo AM, Roberts AC. Converging Prefronto-Insula-Amygdala Pathways in Negative Emotion Regulation in Marmoset Monkeys. Biol Psychiatry 2017; 82:895-903. [PMID: 28756869 PMCID: PMC5697497 DOI: 10.1016/j.biopsych.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Impaired regulation of emotional responses to potential threat is a core feature of affective disorders. However, while the subcortical circuitry responsible for processing and expression of fear has been well characterized, the top-down control of this circuitry is less well understood. Our recent studies demonstrated that heightened emotionality, as measured both physiologically and behaviorally, during conditioned fear and innate/social threat was induced, independently, by excitotoxic lesions of either the anterior orbitofrontal cortex (antOFC) or ventrolateral prefrontal cortex (vlPFC). An important outstanding question is whether the antOFC and vlPFC act on common or distinct downstream targets to regulate negative emotion. METHODS The question was addressed by combining localized excitotoxic lesions in the PFC of a nonhuman primate and functional neuroimaging ([18F]fluorodeoxyglucose positron emission tomography) with a fear-regulating extinction paradigm. Marmoset monkeys with unilateral lesions of either the antOFC or vlPFC were scanned immediately following exposure to a fearful or safe context, and differences in [18F]fluorodeoxyglucose uptake were evaluated. RESULTS [18F]fluorodeoxyglucose uptake in the insula and amygdala of the intact hemisphere was significantly increased in response to the fearful context compared with the safe context. Such discrimination between the two contexts was not reflected in the activity of the insula-amygdala of the antOFC or vlPFC-lesioned hemisphere. Instead, uptake was at an intermediate level in both contexts. CONCLUSIONS These findings demonstrate that the distinct control functions of the antOFC and vlPFC converge on the same downstream targets to promote emotion regulation, taking us closer to a mechanistic understanding of different forms of anxiety.
Collapse
Affiliation(s)
- Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lydia Oikonomidis
- Department of Physiology, Development and Neuroscience, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Sawiak
- Department of Psychology, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Young T Hong
- Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Gemma Cockcroft
- Department of Physiology, Development and Neuroscience, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
6
|
|