1
|
Shaqfah J, Kang W, Gaudette F, Khalil M, Kwan C, Belliveau S, Bourgeois-Cayer É, Hamadjida A, Bédard D, Beaudry F, Huot P. The anti-dyskinetic effect of the clinic-ready mGluR 2 positive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03627-1. [PMID: 39841218 DOI: 10.1007/s00210-024-03627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/10/2024] [Indexed: 01/23/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA. Here, we seek to determine the effect of AZD8529, another highly selective mGluR2 PAM, on L-DOPA-induced AIMs in the 6-OHDA-lesioned rat. Unlike LY-487,379, AZD8529 has previously undergone clinical trials and could therefore be repurposed if proven efficacious in pre-clinical studies. We first determined the pharmacokinetic (PK) profile of AZD8529 to administer doses leading to clinically relevant plasma levels in the behavioural studies. Then, dyskinetic 6-OHDAlesioned rats were administered AZD8529 (0.1, 0.3, and 1 mg/kg) or vehicle in combination with L-DOPA followed by assessment of AIMs severity. The cylinder test was then used to evaluate the effect of AZD8529 on the anti-parkinsonian action of L-DOPA. We found that AZD8529 (0.1, 0.3 and 1 mg/kg) in combination with L-DOPA significantly reduced the severity of AIMs duration (P < 0.05), but not amplitude, when compared to L-DOPA/vehicle. AZD8529 administration did not interfere with L-DOPA anti-parkinsonian action. Our results provide evidence that mGluR2 positive allosteric modulation with AZD8529 may be a viable, yet relatively modest, treatment strategy to alleviate L-DOPA-induced.
Collapse
Affiliation(s)
- Judy Shaqfah
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Woojin Kang
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Marianne Khalil
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Élodie Bourgeois-Cayer
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
2
|
Akotkar L, Aswar U, Ganeshpurkar A, Rathod K, Bagad P, Gurav S. Phytoconstituents Targeting the Serotonin 5-HT 3 Receptor: Promising Therapeutic Strategies for Neurological Disorders. ACS Pharmacol Transl Sci 2024; 7:1694-1710. [PMID: 38898946 PMCID: PMC11184608 DOI: 10.1021/acsptsci.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
The 5-hydroxytryptamine-3 receptor (5-HT3R), a subtype of serotonin receptor, is a ligand-gated ion channel crucial in mediating fast synaptic transmission in the central and peripheral nervous systems. This receptor significantly influences various neurological activities, encompassing neurotransmission, mood regulation, and cognitive processing; hence, it may serve as an innovative target for neurological disorders. Multiple studies have revealed promising results regarding the beneficial effects of these phytoconstituents and extracts on conditions such as nausea, vomiting, neuropathic pain depression, anxiety, Alzheimer's disease, cognition, epilepsy, sleep, and dyskinesia via modulation of 5-HT3R in the pathophysiology of neurological disorder. The review delves into a detailed exploration of in silico, in vitro, and in vivo studies and clinical studies that discussed phytoconstituents acting on 5-HT3R and attenuates difficulties in neurological diseases. The diverse mechanisms by which plant-derived phytoconstituents influence 5-HT3R activity offer exciting avenues for developing innovative therapeutic interventions. Besides producing an agonistic or antagonistic effect, some phytoconstituents exert modulatory effects on 5-HT3R activity through multifaceted mechanisms. These include γ-aminobutyric acid and cholinergic neuronal pathways, interactions with neurokinin (NK)-1, NK2, serotonergic, and γ-aminobutyric acid(GABA)ergic systems, dopaminergic influences, and mediation of calcium ions release and inflammatory cascades. Notably, the phytoconstituent's capacity to reduce oxidative stress has also emerged as a significant factor contributing to their modulatory role. Despite the promising implications, there is currently a dearth of exploration needed to understand the effect of phytochemicals on the 5-HT3R. Comprehensive preclinical and clinical research is of the utmost importance to broaden our knowledge of the potential therapeutic benefits associated with these substances.
Collapse
Affiliation(s)
- Likhit Akotkar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Urmila Aswar
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Ankit Ganeshpurkar
- Department
of Pharmaceutical Chemistry, Poona College
of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune411038, India
| | - Kundlik Rathod
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Pradnya Bagad
- Department
of Pharmacology, Poona College of Pharmacy,
Bharati Vidyapeeth (Deemed to be University), Pune 411038, India
| | - Shailendra Gurav
- Department
of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India
| |
Collapse
|
3
|
Frouni I, Kim E, Shaqfah J, Bédard D, Kwan C, Belliveau S, Huot P. [ 3H]-NFPS binding to the glycine transporter 1 in the hemi-parkinsonian rat brain. Exp Brain Res 2024; 242:1203-1214. [PMID: 38526743 PMCID: PMC11078860 DOI: 10.1007/s00221-024-06815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.
Collapse
Affiliation(s)
- Imane Frouni
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Judy Shaqfah
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Philippe Huot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|