1
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Kim D, Morikawa S, Nakagawa T, Okano H, Kase Y. Advances in brain ischemia mechanisms and treatment approaches: Recent insights and inflammation-driven risks. Exp Neurol 2025; 386:115177. [PMID: 39922448 DOI: 10.1016/j.expneurol.2025.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The application of existing radical treatments for stroke is limited to a small number of cases, with current practices predominantly focusing on conservative therapy. This review examines the pathophysiology of excitotoxicity, oxidative stress, and inflammation during brain ischemia caused by stroke, highlighting insights into each pathology and reporting the latest therapeutic developments that are expected to serve as new treatment options. Finally, we outline the recent attention given to the relationship between periodontal disease and stroke. We propose addressing the limitations of existing treatments for stroke and suggest novel therapeutic approaches while also presenting the potential contribution of periodontal disease treatment to the prevention of stroke.
Collapse
Affiliation(s)
- Doyoon Kim
- Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan
| | - Yoshitaka Kase
- Department of Dentistry and Oral Surgery, Keio University School of Medicine; 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Regenerative Medicine Research Center, Keio University; 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki-shi, 210-0821, Japan; Division of CNS Regeneration and Drug Discovery, International Center for Brain Science (ICBS), Fujita Health University; 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
3
|
Howell JA, Larochelle J, Gunraj RE, Stansbury SM, Liu L, Yang C, Candelario-Jalil E. Effects of global Ripk2 genetic deficiency in aged mice following experimental ischemic stroke. AGING BRAIN 2025; 7:100135. [PMID: 40225421 PMCID: PMC11993155 DOI: 10.1016/j.nbas.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Besides the loss of blood and oxygen reaching the ischemic tissue, many secondary effects of ischemic stroke can cause additional tissue damage, including inflammation, oxidative stress, and proteomic disturbances. Receptor-interacting serine/threonine kinase 2 (RIPK2) is an important mediator in the post-stroke inflammatory cascade that responds to signals and molecular patterns released by dead or dying cells in the ischemic area. We hypothesize that RIPK2 signaling worsens injury and neurological recovery post-stroke and that global deletion of Ripk2 is protective following ischemic stroke in aged mice. Aged (18-24 months) male mice were subjected to permanent middle cerebral artery occlusion (pMCAO). Vertical grid, weight grip, and open field were conducted at baseline and on days 1, 2, 3, 8, 15, and 22 post-stroke. Cognitive tests (novel object recognition and Y-maze) were performed at baseline and day 28 post-stroke. Infarct size was measured using cresyl violet staining, and reactive gliosis was measured using Iba1 and GFAP staining at day 28 post-stroke. Global deletion of Ripk2 (Ripk2-/- ) in aged mice resulted in smaller infarct volume and improved performance on vertical grid and weight grip tests compared to aged wildtype (WT) mice. Additionally, aged Ripk2 -/- mice had less Iba1 staining in the ipsilateral cortex than the aged WT control mice. This study further elucidates the role of RIPK2 signaling in the ischemic cascade and expands our knowledge of RIPK2 in stroke to aged mice. These results support the hypothesis that RIPK2 signaling worsens injury post-stroke and may be an attractive candidate for therapeutic intervention.
Collapse
Affiliation(s)
- John Aaron Howell
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Jonathan Larochelle
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Rachel E. Gunraj
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Sofia M. Stansbury
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Lei Liu
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Changjun Yang
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| | - Eduardo Candelario-Jalil
- University of Florida, Department of Neuroscience, United States
- University of Florida McKnight Brain Institute, United States
| |
Collapse
|
4
|
Howell JA, Larochelle J, Gunraj RE, Stansbury SM, Liu L, Yang C, Candelario-Jalil E. Effects of Global Ripk2 Genetic Deficiency in Aged Mice following Experimental Ischemic Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636687. [PMID: 39974926 PMCID: PMC11839111 DOI: 10.1101/2025.02.05.636687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Besides the loss of blood and oxygen reaching the ischemic tissue, many secondary effects of ischemic stroke can cause additional tissue death, including inflammation, oxidative stress, and proteomic disturbances. Receptor-interacting serine/threonine kinase 2 (RIPK2) is an important mediator in the post-stroke inflammatory cascade that responds to signals and molecular patterns released by dead or dying cells in the ischemic area. We hypothesize that RIPK2 signaling worsens injury and neurological recovery post-stroke and that global deletion of Ripk2 will be protective following ischemic stroke in aged mice. Aged (18-24 months) male mice were subjected to permanent middle cerebral artery occlusion (pMCAO). Vertical grid, weight grip, and open field were conducted at baseline and on days 1, 2, 3, 8, 15, and 22 post-stroke. Cognitive tests (novel object recognition and Y-maze) were performed at baseline and day 28 post-stroke. Infarct size was measured using cresyl violet staining, and reactive gliosis was measured using Iba1 and GFAP staining at day 28 post-stroke. Global deletion of Ripk2 (Ripk2 -/- ) in aged mice resulted in smaller infarct volume and improved performance on vertical grid and weight grip tests compared to aged wildtype (WT) mice. Additionally, aged Ripk2 -/- mice had less Iba1 staining in the ipsilateral cortex than the aged WT control mice. This study further elucidates the role of RIPK2 signaling in the ischemic cascade and expands our knowledge of RIPK2 in stroke to aged mice. These results support the hypothesis that RIPK2 signaling worsens injury post-stroke and may be an attractive candidate for therapeutic intervention.
Collapse
Affiliation(s)
- John Aaron Howell
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Jonathan Larochelle
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Rachel E. Gunraj
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Lei Liu
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Changjun Yang
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| |
Collapse
|
5
|
El-Sayed OS, Alnajjar AZ, Arafa A, Mohammed HE, Elettreby AM, Ibraheem S, Tawfik DE, Abdullah MAA, Tolba MA. Association between risk of ischemic stroke and liver enzymes levels: a systematic review and meta-analysis. BMC Neurol 2025; 25:18. [PMID: 39806288 PMCID: PMC11726974 DOI: 10.1186/s12883-024-03875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Ischemic stroke is a major public health concern, contributing significantly to global morbidity and mortality. Recent studies have suggested that alterations in liver enzymes may be linked to the risk of developing a stroke. However, the relationship between liver enzymes and ischemic stroke remains unclear. OBJECTIVE To examine the potential role of liver enzymes as biomarkers for ischemic stroke. METHODS We systematically searched four databases for articles investigating the association between liver enzymes and ischemic stroke up to March 20th, 2024. Newcastle Ottawa Scale judged the quality of included studies. Risk ratio (RR), hazard ratio (HR), or odds ratio (OR) were extracted and statistically analyzed by RevMan and R software. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) assessed the certainty of evidence. RESULTS Increased levels of gamma-glutamyl transferase (GGT) and alkaline phosphatase (ALP) have shown statistically significant association with increased ischemic stroke risk (RR: 1.43, 95% CI: [1.30 to 1.57], P > 0.00001) and (RR: 1.60, 95% CI: [1.22 to 2.10], P = 0.0006), respectively. Conversely, increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) showed no significant association with ischemic stroke risk (RR: 0.92, 95% CI: [0.68 to 1.24], P = 0.58) and (RR: 1.43, 95% CI: [0.83 to 2.49], P = 0.20), respectively. The evidence for all outcomes had a low or very low level of certainty. CONCLUSION GGT and ALP could be potential biomarkers for increased ischemic stroke risk, which necessitates careful follow-up. However, AST and ALT did not show such association.
Collapse
|
6
|
Shilenok I, Kobzeva K, Deykin A, Pokrovsky V, Patrakhanov E, Bushueva O. Obesity and Environmental Risk Factors Significantly Modify the Association between Ischemic Stroke and the Hero Chaperone C19orf53. Life (Basel) 2024; 14:1158. [PMID: 39337941 PMCID: PMC11433390 DOI: 10.3390/life14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The unique chaperone-like properties of C19orf53, discovered in 2020 as a "hero" protein, make it an intriguing subject for research in relation to ischemic stroke (IS). Our pilot study aimed to investigate whether C19orf53 SNPs are associated with IS. DNA samples from 2138 Russian subjects (947 IS and 1308 controls) were genotyped for 7 C19orf53 SNPs using probe-based PCR. Dominant (D), recessive (R), and log-additive (A) regression models in relation to the effect alleles (EA) were used to interpret associations. An increased risk of IS was associated with rs10104 (EA G; Pbonf(R) = 0.0009; Pbonf(A) = 0.0004), rs11666524 (EA A; Pbonf(R) = 0.003; Pbonf(A) = 0.02), rs346158 (EA C; Pbonf(R) = 0.006; Pbonf(A) = 0.045), and rs2277947 (EA A; Pbonf(R) = 0.002; Pbonf(A) = 0.01) in patients with obesity; with rs11666524 (EA A; Pbonf(R) = 0.02), rs346157 (EA G; Pbonf(R) = 0.036), rs346158 (EA C; Pbonf(R) = 0.005), and rs2277947 (EA A; Pbonf(R) = 0.02) in patients with low fruit and vegetable intake; and with rs10104 (EA G; Pbonf(R) = 0.03) and rs11666524 (EA A; Pbonf(R) = 0.048) in patients with low physical activity. In conclusion, our pilot study provides comprehensive genetic and bioinformatic evidence of the involvement of C19orf53 in IS risk.
Collapse
Affiliation(s)
- Irina Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Division of Neurology, Kursk Emergency Hospital, 305035 Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Alexey Deykin
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, 308015 Belgorod, Russia
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Vladimir Pokrovsky
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Evgeny Patrakhanov
- Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
7
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
8
|
Lu W, Wang Y, Wen J. The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. J Neuroimmune Pharmacol 2024; 19:19. [PMID: 38753217 DOI: 10.1007/s11481-024-10118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti‑inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Yilin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Babenko VA, Varlamova EG, Saidova AA, Turovsky EA, Plotnikov EY. Lactate protects neurons and astrocytes against ischemic injury by modulating Ca 2+ homeostasis and inflammatory response. FEBS J 2024; 291:1684-1698. [PMID: 38226425 DOI: 10.1111/febs.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Lactate is now considered an additional fuel or signaling molecule in the brain. In this study, using an oxygen-glucose deprivation (OGD) model, we found that treatment with lactate inhibited the global increase in intracellular calcium ion concentration ([Ca2+]) in neurons and astrocytes, decreased the percentage of dying cells, and caused a metabolic shift in astrocytes and neurons toward aerobic oxidation of substrates. OGD resulted in proinflammatory changes and increased expression of cytokines and chemokines, whereas incubation with lactate reduced these changes. Pure astrocyte cultures were less sensitive than neuroglia cultures during OGD. Astrocytes exposed to lipopolysaccharide (LPS) also showed pro-inflammatory changes that were reduced by incubation with lactate. Our study suggests that lactate may have neuroprotective effects under ischemic and inflammatory conditions.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Aleena A Saidova
- Cell Biology and Histology Department, School of Biology, Lomonosov Moscow State University, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| |
Collapse
|
11
|
Briones-Valdivieso C, Briones F, Orellana-Urzúa S, Chichiarelli S, Saso L, Rodrigo R. Novel Multi-Antioxidant Approach for Ischemic Stroke Therapy Targeting the Role of Oxidative Stress. Biomedicines 2024; 12:501. [PMID: 38540114 PMCID: PMC10968576 DOI: 10.3390/biomedicines12030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 01/03/2025] Open
Abstract
Stroke is a major contributor to global mortality and disability. While reperfusion is essential for preventing neuronal death in the penumbra, it also triggers cerebral ischemia-reperfusion injury, a paradoxical injury primarily caused by oxidative stress, inflammation, and blood-brain barrier disruption. An oxidative burst inflicts marked cellular damage, ranging from alterations in mitochondrial function to lipid peroxidation and the activation of intricate signalling pathways that can even lead to cell death. Thus, given the pivotal role of oxidative stress in the mechanisms of cerebral ischemia-reperfusion injury, the reinforcement of the antioxidant defence system has been proposed as a protective approach. Although this strategy has proven to be successful in experimental models, its translation into clinical practice has yielded inconsistent results. However, it should be considered that the availability of numerous antioxidant molecules with a wide range of chemical properties can affect the extent of injury; several groups of antioxidant molecules, including polyphenols, carotenoids, and vitamins, among other antioxidant compounds, can mitigate this damage by intervening in multiple signalling pathways at various stages. Multiple clinical trials have previously been conducted to evaluate these properties using melatonin, acetyl-L-carnitine, chrysanthemum extract, edaravone dexborneol, saffron, coenzyme Q10, and oleoylethanolamide, among other treatments. Therefore, multi-antioxidant therapy emerges as a promising novel therapeutic option due to the potential synergistic effect provided by the simultaneous roles of the individual compounds.
Collapse
Affiliation(s)
| | - Felipe Briones
- Institute for Public Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|
12
|
Liu T, Wang W, Li X, Chen Y, Mu F, Wen A, Liu M, Ding Y. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res 2023; 37:5509-5528. [PMID: 37641491 DOI: 10.1002/ptr.7994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Guo K, Shang Y, Wang Z, Li Y, Chen J, Zhu B, Zhang D, Chen J. BRG1 alleviates microglial activation by promoting the KEAP1-NRF2/HO-1 signaling pathway and minimizing oxidative damage in cerebral ischemia-reperfusion. Int Immunopharmacol 2023; 119:110201. [PMID: 37172425 DOI: 10.1016/j.intimp.2023.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
BRG1 is a key factor in the process of apoptosis and oxidative damage; however, its role in the pathophysiology of ischemic stroke is unclear. Here, we discovered that during middle cerebral artery occlusion (MCAO) reperfusion in mice, microglia were significantly activated in the cerebral cortex of the infarct area, and BRG1 expression was increased in the mouse MCAO/R model, peaking at 4 days. In microglia subjected to OGD/R, BRG1 expression increased and peaked at 12 h after reoxygenation. After ischemic stroke, in vitro changing the expression of BRG1 expression levels greatly altered the activation of microglia and the production of antioxidant and pro-oxidant proteins. Knocking down BRG1 expression levels in vitro increased the inflammatory response, promoted microglial activation, and decreased the expression of the NRF2/HO-1 signaling pathway after ischemic stroke. In contrast, overexpression of BRG1 dramatically reduced the expression of NRF2/HO-1 signaling pathway and microglial activation. Our research reveals that BRG1 reduces postischemic oxidative damage via the KEAP1-NRF2/HO-1 signaling pathway, protecting against brain ischemia/reperfusion injury. Using BRG1 as a pharmaceutical target to inhibit inflammatory responses to reduce oxidative damage may be a unique way to explore techniques for the treatment of ischemic stroke and other cerebrovascular illnesses.
Collapse
Affiliation(s)
- Kongwei Guo
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Zhao Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Yu Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Jinliang Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Baofeng Zhu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| | - Jianrong Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
15
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|