1
|
Jao YN, Chao YJ, Chan JF, Hsu YHH. Mass Spectrometry Analysis of Neurotransmitter Shifting during Neurogenesis and Neurodegeneration of PC12 Cells. Int J Mol Sci 2024; 25:10399. [PMID: 39408728 PMCID: PMC11477332 DOI: 10.3390/ijms251910399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) affects movement; however, most patients with PD also develop nonmotor symptoms, such as hyposmia, sleep disorder, and depression. Dopamine levels in the brain have a critical influence on movement control, but other neurotransmitters are also involved in the progression of PD. This study analyzed the fluctuation of neurotransmitters in PC12 cells during neurogenesis and neurodegeneration by performing mass spectrometry. We found that the dopaminergic metabolism pathway of PC12 cells developed vigorously during the neuron differentiation process and that the neurotransmitters were metabolized into 3-methoxytyramine, which was released from the cells. The regulation of the intracellular and extracellular concentrations of adenosine indicated that adenine nucleotides were actively utilized in neural differentiation. Moreover, we exposed the differentiated PC12 cells to rotenone, which is a suitable material for modeling PD. The cells exposed to rotenone in the early stage of differentiation exhibited stimulated serotoninergic metabolism, and the contents of the serotoninergic neurotransmitters returned to their normal levels in the late stage of differentiation. Interestingly, the nondifferentiated cells can resist the toxicant rotenone and produce normal dopaminergic metabolites. However, when differentiated neuron cells were exposed to rotenone, they were seriously damaged, leading to a failure to produce dopaminergic neurotransmitters. In the low-dosage damage process, the amino acids that functioned as dopaminergic pathway precursors could not be absorbed by the cells, and dopamine and L-dopa were secreted and unable to be reuptaken to trigger the cell damage.
Collapse
Affiliation(s)
| | | | | | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan; (Y.-N.J.); (Y.-J.C.); (J.-F.C.)
| |
Collapse
|
2
|
Chen Q, Li S, Han Y, Wei X, Du J, Wang X, Su B, Li J. Toxicological effects of propofol abuse on the dopaminergic neurons in ventral tegmental area and corpus striatum and its potential mechanisms. J Toxicol Sci 2020; 45:391-399. [PMID: 32612007 DOI: 10.2131/jts.45.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This study was aimed at examining propofol- (a known anesthetic) induced emotion-related behavioral disorders in mice, and exploring the possible molecular mechanisms. A total of 60 mice were divided into two groups: control and propofol group. Mice were injected with propofol (150 mg/kg, ip) at 8:00 a.m. (once a day, lasting for 30 days). During the 30 days, loss of righting reflex (LORR) and return of righting reflex (RORR) of mice were recorded every day. At the 1st (T1) and 30th (T2) day of drug discontinuance (T2), 15 mice of each group were selected to perform the open field test; then the mice underwent perfusion fixation, and the midbrain and corpus striatum were separated for immunofluorescence assay with anti-tyrosine hydroxylase (Th) and anti- dopamine transporter (DAT) antibodies. Results showed that after propofol injection, LORR and RORR increased and decreased, respectively. Long-term use of propofol resulted in decreased activities of mice (activity trajectory, line crossing, rearing time, scratching times and defecating frequency). Immunofluorescence assay showed long-term use of propofol induced decrease of Th and DAT. Collectively, our present work suggested long-term abuse of propofol induces neuropsychiatric function impairments, and the possible mechanisms are related to dopamine dyssynthesis via down-regulating tyrosine hydroxylase and dopamine transporter.
Collapse
Affiliation(s)
- Qi Chen
- Department of Anesthesiology, Mianyang Central Hospital, China.,Department of Anesthesiology, Chengdong Ward, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, China
| | - Shurong Li
- Sichuan Key Laboratory of Development and Regeneration, ChengduMedical College, China
| | - Yuping Han
- Sichuan Key Laboratory of Development and Regeneration, ChengduMedical College, China
| | - Xiaohong Wei
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, China
| | - Juan Du
- Department of Anesthesiology, Mianyang Central Hospital, China
| | - Xiaolin Wang
- Department of Anesthesiology, Mianyang Central Hospital, China
| | - Bingyin Su
- Sichuan Key Laboratory of Development and Regeneration, ChengduMedical College, China
| | - Jun Li
- Department of Anesthesiology, Mianyang Central Hospital, China
| |
Collapse
|
3
|
Kmita LC, Ilkiw JL, Rodrigues LS, Targa AD, Noseda ACD, Dos-Santos P, Fagotti J, Trindade ES, Lima MM. Absence of a synergic nigral proapoptotic effect triggered by REM sleep deprivation in the rotenone model of Parkinson´s disease. ACTA ACUST UNITED AC 2020; 12:196-202. [PMID: 31890096 PMCID: PMC6932851 DOI: 10.5935/1984-0063.20190078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excitotoxicity has been related to play a crucial role in Parkinson's disease (PD) pathogenesis. Pedunculopontine tegmental nucleus (PPT) represents one of the major sources of glutamatergic afferences to nigrostriatal pathway and putative reciprocal connectivity between these structures may exert a potential influence on rapid eye movement (REM) sleep control. Also, PPT could be overactive in PD, it seems that dopaminergic neurons are under abnormally high levels of glutamate and consequently might be more vulnerable to neurodegeneration. We decided to investigate the neuroprotective effect of riluzole administration, a N-methyl-D-aspartate (NMDA) receptor antagonist, in rats submitted simultaneously to nigrostrial rotenone and 24h of REM sleep deprivation (REMSD). Our findings showed that blocking NMDA glutamatergic receptors in the SNpc, after REMSD challenge, protected the dopaminergic neurons from rotenone lesion. Concerning rotenone-induced hypolocomotion, riluzole reversed this impairment in the control groups. Also, REMSD prevented the occurrence of rotenone-induced motor impairment as a result of dopaminergic supersensitivity. In addition, higher Fluoro Jade C (FJC) staining within the SNpc was associated with decreased cognitive performance observed in rotenone groups. Such effect was counteracted by riluzole suggesting the occurrence of an antiapoptotic effect. Moreover, riluzole did not rescue cognitive impairment impinged by rotenone, REMSD or their combination. These data indicated that reductions of excitotoxicity, by riluzole, partially protected dopamine neurons from neuronal death and appeared to be effective in relieve specific rotenone-induce motor disabilities.
Collapse
Affiliation(s)
- Luana C Kmita
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil
| | - Jessica L Ilkiw
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil
| | - Lais S Rodrigues
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil.,Federal University of Paraná, Department of Pharmacology - Curitiba - Paraná - Brazil
| | - Adriano Ds Targa
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil.,Federal University of Paraná, Department of Pharmacology - Curitiba - Paraná - Brazil
| | - Ana Carolina D Noseda
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil.,Federal University of Paraná, Department of Pharmacology - Curitiba - Paraná - Brazil
| | - Patrícia Dos-Santos
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil
| | - Juliane Fagotti
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil
| | - Edvaldo S Trindade
- Federal University of Paraná, Department of Cell Biology - Curitiba - Paraná - Brazil
| | - Marcelo Ms Lima
- Federal University of Paraná. Department of Physiology - Curitiba - Paraná - Brazil.,Federal University of Paraná, Department of Pharmacology - Curitiba - Paraná - Brazil
| |
Collapse
|
4
|
Wang Q, Diao Q, Dai P, Chu Y, Wu Y, Zhou T, Cai Q. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:1-8. [PMID: 28043325 DOI: 10.1016/j.pestbp.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10-2mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.
Collapse
Affiliation(s)
- Qiang Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China; Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingyun Diao
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Pingli Dai
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanna Chu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Yanyan Wu
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Ting Zhou
- Institute of Apicultural Research, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Navarria L, Zaltieri M, Longhena F, Spillantini MG, Missale C, Spano P, Bellucci A. Alpha-synuclein modulates NR2B-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochem Int 2015; 85-86:14-23. [PMID: 25846226 DOI: 10.1016/j.neuint.2015.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/13/2015] [Accepted: 03/31/2015] [Indexed: 02/08/2023]
Abstract
Alpha-synuclein (α-syn) is the main protein component of Lewy bodies (LBs), that together with nigrostriatal dopamine neuron loss constitute typical pathological hallmarks of Parkinson's disease (PD). Glutamate N-methyl-d-aspartate receptor (NMDAR) abnormalities, peculiarly involving NR2B-containing NMDAR, have been observed in the brain of PD patients and in several experimental models of the disease. Recent findings, indicating that α-syn can modulate NMDAR trafficking and function, suggest that this protein may be a pivotal regulator of NMDAR activity. Prompted by these evidences, we used fluorescence immunocytochemistry, western blotting and ratiometric Ca(2+) measurements to investigate whether wild type (wt) or C-terminally truncated α-syn can specifically modulate NR2B-containing NMDAR levels, subcellular trafficking and function. In addition, we evaluated whether the exposure of primary cortical neurons to increasing concentrations of rotenone could differentially regulate NR2B levels and cell viability in the presence or in the absence of α-syn. Our results indicate that both wt and C-terminally truncated α-syn negatively modulate NR2B-containing NMDAR levels, membrane translocation and function. Moreover, we found that absence of α-syn abolishes the rotenone-dependent decrease of NR2B levels and reduces neuronal vulnerability in primary cortical neurons. These findings suggest that α-syn can modulate neuronal resilience by regulating NR2B-containing NMDAR, whose specific alterations could connect α-syn pathology to neuronal degeneration in PD.
Collapse
Affiliation(s)
- Laura Navarria
- Department of Molecular and Translation Medicine, University of Brescia, Italy
| | - Michela Zaltieri
- Department of Molecular and Translation Medicine, University of Brescia, Italy
| | - Francesca Longhena
- Department of Molecular and Translation Medicine, University of Brescia, Italy
| | - Maria Grazia Spillantini
- Department of Clinical Neuroscience, The Clifford Allbutt Building, University of Cambridge, Cambridge, UK
| | - Cristina Missale
- Department of Molecular and Translation Medicine, University of Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translation Medicine, University of Brescia, Italy; IRCCS San Camillo, Venice, Italy
| | - Arianna Bellucci
- Department of Molecular and Translation Medicine, University of Brescia, Italy.
| |
Collapse
|
6
|
Jaumotte JD, Zigmond MJ. Comparison of GDF5 and GDNF as neuroprotective factors for postnatal dopamine neurons in ventral mesencephalic cultures. J Neurosci Res 2014; 92:1425-33. [PMID: 24916473 DOI: 10.1002/jnr.23425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023]
Abstract
Loss of dopamine neurons is associated with the motor deficits that occur in Parkinson's disease. Although many drugs have proven to be useful in the treatment of the symptoms of this disease, none has been shown to have a significant impact on the development of the disease. However, we believe that several neurotrophic factors have the potential to reduce its progression. Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β superfamily of neurotrophic factors, has been extensively studied in this regard. Less attention has been paid to growth/differentiation factor 5 (GDF5), another member of the same superfamily. This study compares GDNF and GDF5 in dissociated cultures prepared from ventral mesencephalon and in organotypic co-cultures containing substantia nigra, striatum, and neocortex. We report that both GDNF (10-500 ng/ml) and GDF5 (100-500 ng/ml) promoted the survival of dopamine neurons from the substantia nigra of postnatal rats, although GDNF was considerably more potent than GDF5. In contrast, neither factor had any significant effect on the survival of dopamine neurons from the rat ventral tegmental area. Using organotypic co-cultures, we also compared GDF5 with GDNF as chemoattractants for the innervation of the striatum and the neocortex by dopamine neurons from the substantia nigra. The addition of either GDF5 or GDNF (100-500 ng/ml) caused innervation by dopamine neurons into the cortex as well as the striatum, which did not occur in untreated cultures. Our results are consistent with similar findings suggesting that GDF5, like GDNF, deserves attention as a possible therapeutic intervention for Parkinson's disease.
Collapse
Affiliation(s)
- Juliann D Jaumotte
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
7
|
Wild AR, Akyol E, Brothwell SLC, Kimkool P, Skepper JN, Gibb AJ, Jones S. Memantine block depends on agonist presentation at the NMDA receptor in substantia nigra pars compacta dopamine neurones. Neuropharmacology 2013; 73:138-46. [PMID: 23727219 DOI: 10.1016/j.neuropharm.2013.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/15/2013] [Accepted: 05/08/2013] [Indexed: 11/16/2022]
Abstract
NMDA glutamate receptors (NMDARs) have critical functional roles in the nervous system but NMDAR over-activity can contribute to neuronal damage. The open channel NMDAR blocker, memantine is used to treat certain neurodegenerative diseases, including Parkinson's disease (PD) and is well tolerated clinically. We have investigated memantine block of NMDARs in substantia nigra pars compacta (SNc) dopamine neurones, which show severe pathology in PD. Memantine (10 μM) caused robust inhibition of whole-cell (synaptic and extrasynaptic) NMDARs activated by NMDA at a high concentration or a long duration, low concentration. Less memantine block of NMDAR-EPSCs was seen in response to low frequency synaptic stimulation, while responses to high frequency synaptic stimulation were robustly inhibited by memantine; thus memantine inhibition of NMDAR-EPSCs showed frequency-dependence. By contrast, MK-801 (10 μM) inhibition of NMDAR-EPSCs was not significantly different at low versus high frequencies of synaptic stimulation. Using immunohistochemistry, confocal imaging and stereological analysis, NMDA was found to reduce the density of cells expressing tyrosine hydroxylase, a marker of viable dopamine neurones; memantine prevented the NMDA-evoked decrease. In conclusion, memantine blocked NMDAR populations in different subcellular locations in SNc dopamine neurones but the degree of block depended on the intensity of agonist presentation at the NMDAR. This profile may contribute to the beneficial effects of memantine in PD, as glutamatergic activity is reported to increase, and memantine could preferentially reduce over-activity while leaving some physiological signalling intact.
Collapse
Affiliation(s)
- A R Wild
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|