1
|
Shi D, Xu S, Zhuo J, McKenna MC, Gullapalli RP. White Matter Alterations in Fmr1 Knockout Mice during Early Postnatal Brain Development. Dev Neurosci 2020; 41:274-289. [PMID: 32348987 DOI: 10.1159/000506679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/19/2020] [Indexed: 01/20/2023] Open
Abstract
Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability ascribed to the autism spectrum disorder. Studies with FXS patients have reported altered white matter volume compared to controls. The Fmr1 knockout (KO) mouse, a model for FXS, showed evidence of delayed myelination during postnatal brain development. In this study, we examined several white matter regions in the male Fmr1 KO mouse brain compared to male wild-type (WT) mice at postnatal days (PND) 18, 21, 30, and 60, which coincide with critical stages of myelination and postnatal brain development. White matter volume, T2 relaxation time, and magnetization transfer ratio (MTR) were measured using magnetic resonance imaging and myelin content was determined with histological staining of myelin. Differences in the developmental accumulation of white matter and myelin between Fmr1 KO and WT mice were observed in the corpus callosum, external and internal capsules, cerebral peduncle, and fimbria. Alterations were more predominant in the external and internal capsules and fimbria of Fmr1 KO mice, where the MTR was lower at PND 18, then elevated at PND 30, and again lower at PND 60 compared to the corresponding regions in WT mice. The pattern of changes in MTR were similar to those observed in myelin staining and could be related to the altered protein synthesis that is a hallmark of FXS. While no significant changes in white matter volumes and T2 relaxation time between the Fmr1 KO and WT mice were observed, the altered pattern of myelin staining and MTR, particularly in the external capsule, reflecting the abnormalities associated with myelin content is suggestive of a developmental delay in the white matter of Fmr1 KO mouse brain. These early differences in white matter during critical developmental stages may contribute to altered brain networks in the Fmr1 KO mice.
Collapse
Affiliation(s)
- Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA, .,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
2
|
Haag L, Quetscher C, Dharmadhikari S, Dydak U, Schmidt-Wilcke T, Beste C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes. Hum Brain Mapp 2015; 36:4383-93. [PMID: 26354091 DOI: 10.1002/hbm.22920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022] Open
Abstract
Important issues for cognitive control are response selection processes, known to depend on fronto-striatal networks with recent evidence suggesting that striatal gamma-amino butyric acid (GABA) levels play an important role. Regional GABA concentrations have also been shown to modulate intrinsic connectivity, e.g. of the default mode network. However, the interrelation between striatal GABA levels, basal ganglia network (BGN) connectivity, and performance in cognitive control is elusive. In the current study, we measure striatal GABA levels using magnetic resonance spectroscopy (MRS) and resting state parameters using functional magnetic resonance imaging (fMRI). Resting state parameters include activity within the BGN, as determined by the low frequency power (LFP) within the network, and the functional connectivity between the BGN and somatomotor network (SMN). Specifically, we examine the interrelation between GABA, resting state parameters, and performance (i.e., accuracy) in conflict monitoring using a Simon task. Response control was affected by striatal GABA+ levels and activity within the BGN, especially when response selection was complicated by altered stimulus-response mappings. The data suggest that there are two mechanisms supporting response selection accuracy. One is related to resting state activity within the BGN and modulated by striatal GABA+ levels. The other is related to decreased cortico-striatal network connectivity, unrelated to the GABAergic system. The inclusion of all three factors (i.e., striatal GABA+ levels, activity within the BGN, and BGN-SMN network connectivity) explained a considerable amount of variance in task accuracy. Striatal neurobiochemical (GABA+) and parameters of the resting state BGN represent important modulators of response control.
Collapse
Affiliation(s)
- Lauren Haag
- Department of Neurology, BG-Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Clara Quetscher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
3
|
Mullins RJ, Xu S, Pereira EFR, Pescrille JD, Todd SW, Mamczarz J, Albuquerque EX, Gullapalli RP. Prenatal exposure of guinea pigs to the organophosphorus pesticide chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 2015; 48:9-20. [PMID: 25704171 DOI: 10.1016/j.neuro.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Su Xu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The prevalence of childhood neurodevelopmental disorders has been increasing over the last several decades. Prenatal and early childhood exposure to environmental toxicants is increasingly recognized as contributing to the growing rate of neurodevelopmental disorders. Very little information is known about the mechanistic processes by which environmental chemicals alter brain development. We review the recent advances in brain imaging modalities and discuss their application in epidemiologic studies of prenatal and early childhood exposure to environmental toxicants. RECENT FINDINGS Neuroimaging techniques (volumetric and functional MRI, diffusor tensor imaging, and magnetic resonance spectroscopy) have opened unprecedented access to study the developing human brain. These techniques are noninvasive and free of ionization radiation making them suitable for research applications in children. Using these techniques, we now understand much about structural and functional patterns in the typically developing brain. This knowledge allows us to investigate how prenatal exposure to environmental toxicants may alter the typical developmental trajectory. SUMMARY MRI is a powerful tool that allows in-vivo visualization of brain structure and function. Used in epidemiologic studies of environmental exposure, it offers the promise to causally link exposure with behavioral and cognitive manifestations and ultimately to inform programs to reduce exposure and mitigate adverse effects of exposure.
Collapse
|
5
|
Johnson GA, Calabrese E, Little PB, Hedlund L, Qi Y, Badea A. Quantitative mapping of trimethyltin injury in the rat brain using magnetic resonance histology. Neurotoxicology 2014; 42:12-23. [PMID: 24631313 DOI: 10.1016/j.neuro.2014.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today's gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image-based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/kg and 12 mg/kg trimethyltin. Besides detecting brain-wide changes, magnetic resonance histology provides a quantitative assessment of dose-dependent effects. These effects can be found in different magnetic resonance contrast mechanisms, providing multivariate biomarkers for the same spatial location. In this study, deformation-based morphometry detected areas where previous studies have detected cell loss, while voxel-wise analyses of diffusion tensor parameters revealed microstructural changes due to such things as cellular swelling, apoptosis, and inflammation. Magnetic resonance histology brings a valuable addition to pathology with the ability to generate brain-wide quantitative parametric maps for markers of toxic insults in the rodent brain.
Collapse
Affiliation(s)
- G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States; Biomedical Engineering, Duke University, Durham, NC, United States.
| | - Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States; Biomedical Engineering, Duke University, Durham, NC, United States
| | | | - Laurence Hedlund
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|