1
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
2
|
Yuzawa S, Nakashio M, Ichimura S, Shimoda M, Nakashima A, Marukawa-Hashimoto Y, Kawano Y, Suzuki K, Yoshitomi K, Kawahara M, Tanaka KI. Ergothioneine Prevents Neuronal Cell Death Caused by the Neurotoxin 6-Hydroxydopamine. Cells 2024; 13:230. [PMID: 38334622 PMCID: PMC10854700 DOI: 10.3390/cells13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
Collapse
Affiliation(s)
- Saho Yuzawa
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Motonari Nakashio
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Suzuna Ichimura
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ayaka Nakashima
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yuka Marukawa-Hashimoto
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yusuke Kawano
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kengo Suzuki
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kenichi Yoshitomi
- Sakichi, Co., Ltd., 5-531 Kuromaru-Machi, Omura, Nagasaki 856-0808, Japan;
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ken-ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| |
Collapse
|
3
|
Sakakibara O, Shimoda M, Yamamoto G, Higashi Y, Ikeda-Imafuku M, Ishima Y, Kawahara M, Tanaka KI. Effectiveness of Albumin-Fused Thioredoxin against 6-Hydroxydopamine-Induced Neurotoxicity In Vitro. Int J Mol Sci 2023; 24:ijms24119758. [PMID: 37298708 DOI: 10.3390/ijms24119758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by oxidative stress-dependent loss of dopaminergic neurons in the substantia nigra and elevated microglial inflammatory responses. Recent studies show that cell loss also occurs in the hypothalamus in PD. However, effective treatments for the disorder are lacking. Thioredoxin is the major protein disulfide reductase in vivo. We previously synthesized an albumin-thioredoxin fusion protein (Alb-Trx), which has a longer plasma half-life than thioredoxin, and reported its effectiveness in the treatment of respiratory and renal diseases. Moreover, we reported that the fusion protein inhibits trace metal-dependent cell death in cerebrovascular dementia. Here, we investigated the effectiveness of Alb-Trx against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. Alb-Trx significantly inhibited 6-OHDA-induced neuronal cell death and the integrated stress response. Alb-Trx also markedly inhibited 6-OHDA-induced reactive oxygen species (ROS) production, at a concentration similar to that inhibiting cell death. Exposure to 6-OHDA perturbed the mitogen-activated protein kinase pathway, with increased phosphorylated Jun N-terminal kinase and decreased phosphorylated extracellular signal-regulated kinase levels. Alb-Trx pretreatment ameliorated these changes. Furthermore, Alb-Trx suppressed 6-OHDA-induced neuroinflammatory responses by inhibiting NF-κB activation. These findings suggest that Alb-Trx reduces neuronal cell death and neuroinflammatory responses by ameliorating ROS-mediated disruptions in intracellular signaling pathways. Thus, Alb-Trx may have potential as a novel therapeutic agent for PD.
Collapse
Affiliation(s)
- Okina Sakakibara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Gaku Yamamoto
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku 783-8505, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
4
|
Shao J, Liu X, Lian M, Mao Y. Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways. Neurotox Res 2022; 40:2221-2237. [PMID: 36097250 DOI: 10.1007/s12640-022-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 12/31/2022]
Abstract
Parkinson disease is a neurodegenerative disorder distinguished by dopaminergic shortage in the striatum and the accumulation of α-synuclein neuronal aggregates in the brains of patients. Since, there is no accurate treatment available for Parkinson disease, researches are designed to alleviate the pathognomonic symptoms such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Accordingly, a number of compounds have been reported to inhibit these pathognomonic symptoms. In this study, we have assessed the neuroprotective potential of citronellol against 6-OHDA-induced neurotoxicity in SH-SY5Y cells. The results found that citronellol treatment effectively hindered the cell death caused by 6-OHDA and thereby maintaining the cell viability in SH-SY5Y cells at 50 µg/mL concentration. As expected, the citronellol treatment significantly reduced the 6-OHDA-induced secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), which was obtained through ELISA technique. Similarly, citronellol hindered the 6-OHDA-induced oxidative stress by lowering the intracellular ROS and NO level and MDA leakage along with increased expression of SOD level in SH-SY5Y cells. The JC-1 staining showed that 6-OHDA increased the number of green fluorescent dots with ruptured mitochondrial membrane potential, while citronellol increased the amount of red fluorescent, showing the rescue potential against the 6-OHDA-induced mitochondrial dysfunction. Furthermore, citronellol hampered the 6-OHDA-induced apoptosis via the suppression of Bcl-2/Bax pathway. The western blotting results hypothesized that citronellol rescued SH-SY5Y cells from 6-OHDA-induced neurotoxicity via modulating ROS-NO, MAPK/ERK, and PI3K/Akt signaling pathways. However, further clinical trials are required to verify the anti-Parkinson efficacy.
Collapse
Affiliation(s)
- Jiahui Shao
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Xuan Liu
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Mengjia Lian
- Department of Neurology, The First People's Hospital of Wenling, Zhejiang Province, Wenling, 317500, China
| | - Youbing Mao
- Department of Special Inspection Section, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Chengxi StreetZhejiang Province, Wenling, 317500, China.
| |
Collapse
|
5
|
Lee SJ, Kim JE, Choi YJ, Gong JE, Jin YJ, Lee DW, Choi YW, Hwang DY. Anti-Obesity Effect of α-Cubebenol Isolated from Schisandra chinensis in 3T3-L1 Adipocytes. Biomolecules 2021; 11:1650. [PMID: 34827648 PMCID: PMC8615670 DOI: 10.3390/biom11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
The efficacy of α-cubebenol isolated from Schisandra chinensis has been studied in several diseases, including cecal ligation, puncture challenge-induced sepsis, and degranulation of neutrophils. To identify the novel functions of α-cubebenol on lipid metabolism, alterations on the regulation of lipogenesis, lipolysis, and inflammatory response were observed in 3T3-L1 adipocytes treated with α-cubebenol. Most lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were suppressed in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenol without significant cytotoxicity. In addition, similar inhibition effects were observed in the iNOS-induced COX-2 mediated pathway and NLRP3 inflammasome pathway of MDI-stimulated 3T3-L1 cells treated with α-cubebenol. Lipolytic targets, such as cAMP concentration, expression of adenylyl cyclase and PDE4, and their downstream signaling pathway, in MDI-stimulated 3T3-L1 cells were stimulated by the α-cubebenol treatment. The levels of transcription factors and related proteins for β-oxidation were significantly higher in the MDI + α-cubebenol treated group than in the MDI + Vehicle treated group. These results show that α-cubebenol has a novel role as a lipogenesis inhibitor, lipolysis and β-oxidation stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Da Woon Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Young Whan Choi
- Department of Horticultural Bioscience, Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
6
|
Ke M, Chong CM, Zhu Q, Zhang K, Cai CZ, Lu JH, Qin D, Su H. Comprehensive Perspectives on Experimental Models for Parkinson's Disease. Aging Dis 2021; 12:223-246. [PMID: 33532138 PMCID: PMC7801282 DOI: 10.14336/ad.2020.0331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) ranks second among the most common neurodegenerative diseases, characterized by progressive and selective loss of dopaminergic neurons. Various cross-species preclinical models, including cellular models and animal models, have been established through the decades to study the etiology and mechanism of the disease from cell lines to nonhuman primates. These models are aimed at developing effective therapeutic strategies for the disease. None of the current models can replicate all major pathological and clinical phenotypes of PD. Selection of the model for PD largely relies on our interest of study. In this review, we systemically summarized experimental PD models, including cellular and animal models used in preclinical studies, to understand the pathogenesis of PD. This review is intended to provide current knowledge about the application of these different PD models, with focus on their strengths and limitations with respect to their contributions to the assessment of the molecular pathobiology of PD and identification of the therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Minjing Ke
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qi Zhu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ke Zhang
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cui-Zan Cai
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Hong Lu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dajiang Qin
- 2Guangzhou Regenerative Medicine and Health Guangdong Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huanxing Su
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
7
|
Zhi Y, Lu C, Zhu G, Li Z, Zhu P, Liu Y, Shi W, Su L, Jiang J, Qu J, Zhao X. Positive regulation of the CREB phosphorylation via JNK-dependent pathway prevents antimony-induced neuronal apoptosis in PC12 cell and mice brain. Neurotoxicology 2020; 81:101-108. [PMID: 32920012 DOI: 10.1016/j.neuro.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Antimony (Sb) is a potentially toxic chemical element abundantly found in the environment. We previously reported that Sb promoted neuronal deathvia reactive oxygen species-dependent autophagy. Here, we assessed the role of cyclic adenosine monophosphate response element-binding protein (CREB) in Sb-induced neuronal damage. We found that Sb treatment induced CREB phosphorylation and neuronal apoptosis both in vitro and in vivo. Interestingly, inhibition of CREB's transcriptional activity with 666-15 dramatically enhanced apoptosis in PC12 cells by downregulating B-cell lymphoma 2 (Bcl-2). Additionally, Sb activated ERK, JNK, and p38 signaling ; however, only JNK promoted CREB phosphorylation. In conclusion, our findings suggest that CREB phosphorylation by JNK attenuates Sb-induced neuronal apoptosis via Bcl-2 upregulation. These data suggest that JNK-dependent CREB activation prevents neurons from Sb-induced apoptosis and guides the development of novel strategies to prevent Sb-induced neurotoxicity.
Collapse
Affiliation(s)
- Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Chunhua Lu
- Departmentof Occupational Health and Occupational Diseases, Nantong Center for Disease Control and Prevention, Nangtong, 226007, China
| | - Ganlin Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Zhijie Li
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Piaoyu Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Yuting Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| |
Collapse
|
8
|
Carnosine suppresses neuronal cell death and inflammation induced by 6-hydroxydopamine in an in vitro model of Parkinson's disease. PLoS One 2020; 15:e0240448. [PMID: 33052927 PMCID: PMC7556511 DOI: 10.1371/journal.pone.0240448] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease for which prevention and effective treatments are lacking. The pathogenesis of Parkinson's disease is not clearly understood. It is thought to be caused by oxidative stress-dependent loss of dopamine neurons in the substantia nigra and the promotion of inflammatory responses by microglia at the lesion site. In addition, cell loss occurs in the hypothalamus of Parkinson's disease patients. Carnosine is an endogenous dipeptide that can exert many beneficial effects, including an antioxidant action, metal ion chelation, proton buffering capacity, and inhibition of protein carbonylation and glycolysis. Previously, we found that carnosine inhibits trace metal-induced death of immortalized hypothalamic neuronal GT1-7 cells. In this study, we analyzed the efficacy of carnosine on 6-hydroxydopamine (6-OHDA)-dependent GT1-7 cell death and inflammatory responses. We found that carnosine significantly prevented 6-OHDA-dependent GT1-7 cell death in a dose-dependent manner. Moreover, carnosine significantly suppressed the expression of 6-OHDA-induced integrated stress response (ISR)-related factors and pro-inflammatory cytokines. Carnosine also significantly inhibited 6-OHDA-dependent reactive oxygen species (ROS) production and c-Jun amino-terminal kinase (JNK) pathway activation in GT1-7 cells. These results indicate that carnosine inhibits hypothalamic neuronal cell death and inflammatory responses by inhibiting the ROS-JNK pathway. We therefore suggest that carnosine may be effective in preventing the onset or the exacerbation of Parkinson's disease.
Collapse
|
9
|
Xie W, Tan B, Yang Z, Yu X, Chen L, Ran D, Xu Q, Zhou X. Nrf2/ARE pathway activation is involved in negatively regulating heat-induced apoptosis in non-small cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:439-445. [PMID: 32255482 DOI: 10.1093/abbs/gmaa013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Hyperthermia, particularly in combination with chemoradiotherapy, is widely used to treat various cancers. However, hyperthermia treatment is often insufficient due to thermo-tolerance. To date, the detailed mechanism underlying thermo-tolerance has not been clarified. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway is an important cellular cytoprotective defense system that is activated by various stresses. In this study, using immunocytochemistry and western blot analysis, we demonstrated that heat stress induced Nrf2/ARE activation through the nuclear translocation of Nrf2 in non-small cell lung cancer cells. Luciferase activity was also increased. Additionally, antioxidant enzymes were increased through Nrf2 activation after heat stress. Transfection of lung cancer cells with siRNA directed against Nrf2 increased heat cytotoxicity and cell apoptosis. Heat stress could induce reactive oxygen species (ROS) accumulation, while the antioxidant NAC obviously reduced cell apoptosis ratio, indicating that heat stress induced cell apoptosis in a ROS-dependent manner. Knockdown of Nrf2 led to an abnormal elevation of ROS, and the antioxidant NAC could increase Nrf2 activation, indicating that ROS and Nrf2 act within a negative feedback loop. Taken together, these results demonstrated that Nrf2 pathway is important for maintaining resistance to heat stress, and we postulated that Nrf2 may represent a potential therapeutic target for hyperthermia in lung cancer.
Collapse
Affiliation(s)
- Wenyue Xie
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Benxu Tan
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xian Yu
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Lingxiu Chen
- Department of Respiratory, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Danhua Ran
- Respiratory Department of the Elderly, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Qing Xu
- Pulmonary And Critical Care Medicine Ward, Eastern Hospital, Sichuan Provincial Medical Sciences Academy & Sichuan Provincial People’s Hospital, Chengdu 610100, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| |
Collapse
|
10
|
Serafini MM, Catanzaro M, Fagiani F, Simoni E, Caporaso R, Dacrema M, Romanoni I, Govoni S, Racchi M, Daglia M, Rosini M, Lanni C. Modulation of Keap1/Nrf2/ARE Signaling Pathway by Curcuma- and Garlic-Derived Hybrids. Front Pharmacol 2020; 10:1597. [PMID: 32047434 PMCID: PMC6997134 DOI: 10.3389/fphar.2019.01597] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Nrf2 is a basic leucine zipper transcription factor that binds to the promoter region of the antioxidant response element (ARE), inducing the coordinated up-regulation of antioxidant and detoxification genes. We recently synthesized a set of new molecules by combining the functional moieties of curcumin and diallyl sulfide, both known to induce the expression of antioxidant phase II enzymes by activating Nrf2 pathway. The aim of the study is to investigate the ability of such compounds to activate Keap1/Nrf2/ARE cytoprotective pathway, in comparison with two reference Nrf2-activators: curcumin and dimethyl fumarate, a drug approved for the treatment of relapsing-remitting multiple sclerosis. Furthermore, since Nrf2 pathway is known to be regulated also by epigenetic modifications, including key modifications in microRNA (miRNA) expression, the effects of the hybrids on the expression levels of selected miRNAs, associated with Nrf2 signaling pathway have also been investigated. The results show that compounds exert antioxidant effect by activating Nrf2 signaling pathway and inducing the ARE-regulated expression of its downstream target genes, such as HO-1 and NQO1, with two hybrids to a higher extent than curcumin. In addition, some molecules induce changes in the expression levels of miR-125b-5p, even if to a lesser extent than curcumin. However, no changes have been observed in the expression levels of mRNA coding for glutathione synthetase, suggesting that the modulation of this mRNA is not strictly under the control of miR-125b-5p, which could be influenced by other miRNAs.
Collapse
Affiliation(s)
- Melania Maria Serafini
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | | | - Francesca Fagiani
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Elena Simoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Roberta Caporaso
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Irene Romanoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Jantas D, Chwastek J, Grygier B, Lasoń W. Neuroprotective Effects of Necrostatin-1 Against Oxidative Stress-Induced Cell Damage: an Involvement of Cathepsin D Inhibition. Neurotox Res 2020; 37:525-542. [PMID: 31960265 PMCID: PMC7062871 DOI: 10.1007/s12640-020-00164-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress–induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10–40 μM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress–induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type–specific interplay between necroptosis and apoptosis has been demonstrated.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - Jakub Chwastek
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.,Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
12
|
Zhu G, Liu Y, Zhi Y, Jin Y, Li J, Shi W, Liu Y, Han Y, Yu S, Jiang J, Zhao X. PKA- and Ca 2+-dependent p38 MAPK/CREB activation protects against manganese-mediated neuronal apoptosis. Toxicol Lett 2019; 309:10-19. [PMID: 30951808 DOI: 10.1016/j.toxlet.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 11/27/2022]
Abstract
Although manganese (Mn) is an essential trace element, its excessive consumption may lead to neuronal death and neurodegenerative disorders. Human cells launch adaptive responses to attenuate Mn-induced neurotoxicity. However, the regulation of the responsive proteins and their function during Mn-stimulated neurotoxicity remain largely unknown. We report the role of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in Mn-induced neuronal apoptosis. Mn increased CREB phosphorylation and cellular apoptosis in both PC12 cells and mouse brain tissue. Furthermore, downregulation of CREB with shRNA plasmid transfection significantly worsened the PC12 cell apoptosis by decreasing mRNA and protein expression of brain-derived neurotrophic factor (BDNF). Moreover, Mn enhanced protein kinase A (PKA) activation and activation of the p38 MAPK and JNK pathways. Inhibition of p38 MAPK rather than JNK effectively reduced the CREB phosphorylation. Subsequent analysis showed that a PKA inhibitor blocked p38 MAPK and CREB phosphorylation. Moreover, the intracellular Ca2+ chelator BAPTA-AM decreased the phosphorylation of p38 MAPK and CREB but failed to reduce PKA activation. In summary, p38 MAPK/CREB activation via PKA activation and increased cellular Ca2+ helped to alleviate Mn-induced neuronal apoptosis via BDNF regulation. These findings improve our understanding of Mn-induced neurotoxicity and the molecular targets to antagonise it.
Collapse
Affiliation(s)
- Ganlin Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yiming Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yang Jin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Li
- School of Pharmacy, Nangtong University, Nantong 226001, China.
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Yuting Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
13
|
Zhang Y, Huang WR. Sanguinarine induces apoptosis of human lens epithelial cells by increasing reactive oxygen species via the MAPK signaling pathway. Mol Med Rep 2019; 19:4449-4456. [PMID: 30942394 PMCID: PMC6472141 DOI: 10.3892/mmr.2019.10087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 02/21/2019] [Indexed: 01/26/2023] Open
Abstract
Posterior capsular opacification (PCO) remains a major complication of cataract surgery and is the most common reason for loss of vision. PCO is primarily associated with uncontrolled proliferation of residual human lens epithelial cells (HLEs). Sanguinarine is a type of benzophenanthridine alkaloid extracted from the herbaceous plant Sanguinaria canadensis, which is widely used for its anti‑microbial, anti‑inflammatory, anti‑oxidative and anti‑proliferative properties. However, studies examining the effect of sanguinarine on HLEs and the underlying mechanism are scarce. The present study aimed to investigate the effects of sanguinarine on HLEs. An MTT assay was used to determine the effect of sanguinarine on cell viability. Flow cytometry was used to evaluate cell apoptosis, and the mitochondrial membrane potential and reactive oxygen species (ROS) levels. A caspase 3/7 activity assay was also used to evaluate cell apoptosis, while western blotting was performed to determine protein levels. The results demonstrated that sanguinarine exerted an anti‑proliferative effect by inducing ROS, and caused cell apoptosis via mitochondrial and caspase‑dependent pathways. Treatment with sanguinarine led to the loss of mitochondrial membrane potential. Sanguinarine also significantly increased the phosphorylation levels of c‑Jun N‑terminal kinase and p38, which indicated the involvement of the mitogen‑activated protein kinase signaling pathway. These results suggested that sanguinarine may have a noteworthy pro‑apoptotic effect on HLEs, and may be used as a potential drug for PCO or even cataract prevention.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Wan-Rong Huang
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| |
Collapse
|
14
|
Cao S, Du J, Hei Q. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp Ther Med 2017; 14:4919-4927. [PMID: 29201196 PMCID: PMC5704330 DOI: 10.3892/etm.2017.5127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/08/2017] [Indexed: 12/15/2022] Open
Abstract
The incidence of neurodegenerative diseases including Alzheimer's and Parkinson's disease has markedly increased over the past few decades. Oxidative stress is considered to be a common pathophysiological condition resulting in neurotoxicity. Lycium barbarum polysaccharide (LBP) is the major active component of Lycium barbarum L., which exhibit potent antioxidant activity. The current study investigated the neuroprotective effects of LBP in H2O2-treated PC12 cells in vitro and in CoCl2-treated rats in vivo. It was determined that LBP concentration-dependently reversed the H2O2-induced increase in reactive oxygen species (ROS) levels, decrease in cell viability, increase in TUNEL-stained cells, increase in caspase-3 and −9 activity and decrease in mitochondrial membrane potential, indicating the amelioration of mitochondrial apoptosis. Furthermore, LBP inhibited the H2O2-induced decrease in nuclear factor erythroid 2-related factor 2 (Nrf)2 and heme oxygenase (HO)-1 expression and binding of Nrf2 to the promoters of HO-1. Silencing of Nrf2 and inhibition of HO-1 by zinc protoporphyrin IX (ZnPP) reversed the protective effects of LBP against H2O2-resulted neurotoxicity in PC12 cells. In CoCl2-treated rats, it was demonstrated that LBP decreased brain tissue apoptosis, reduced the time spent by rats finding the platform site, decreased escape latencies and reduced the distance traveled to find the platform. In addition, LBP inhibited the CoCl2-induced decrease of Nrf2 and HO-1 expression. Administration of ZnPP also suppressed the protective effects of LBP against CoCl2-resulted neurotoxicity in rats. Thus, the current study indicated that LBP exhibits protective effects against neurotoxicity by upregulating Nrf2/HO-1 signaling. These data may increase understanding regarding the neuroprotective activities of LBP.
Collapse
Affiliation(s)
- Shumei Cao
- Department of Anesthesiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi 710002, P.R. China
| | - Jianlong Du
- Department of Anesthesiology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi 712000, P.R. China
| | - Qiaohong Hei
- Department of Anesthesiology, Xi'an High-Tech Hospital, Xi'an, Shaanxi 710075, P.R. China
| |
Collapse
|
15
|
Alvariño R, Alonso E, Tribalat MA, Gegunde S, Thomas OP, Botana LM. Evaluation of the Protective Effects of Sarains on H 2O 2-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Neurotox Res 2017; 32:368-380. [PMID: 28478531 DOI: 10.1007/s12640-017-9748-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Sarains are diamide alkaloids isolated from the Mediterranean sponge Haliclona (Rhizoniera) sarai that have previously shown antibacterial, insecticidal and anti-fouling activities. In this study, we examined for the first time the neuroprotective effects of sarains 1, 2 and A against oxidative stress in a human neuronal model. SH-SY5Y cells were co-incubated with sarains at concentrations ranging from 0.01 to 10 μM, and the well-known oxidant hydrogen peroxide at 150 μM for 6 h and the protective effects of the compounds were evaluated. Among the sarains tested, sarain A was the most promising compound, improving mitochondrial function and decreasing reactive oxygen species levels in human neuroblastoma cells treated with the compound at 0.01, 0.1 and 1 μM. This compound was also able to increase the activity of the antioxidant enzymes superoxide dismutases by inducing the translocation of the nuclear factor E2-related factor 2 (Nrf2) to the nucleus at the lower concentrations tested (0.01 and 0.1 μM). Moreover, sarain A at 0.1 and 1 μM blocked the mitochondrial permeability transition pore (mPTP) opening through cyclophilin D inhibition. These results suggest that the protective effects produced by the treatment with sarain A are related with its ability to block the mPTP and to enhance the Nrf2 pathway, indicating that sarain A may be a candidate compound for further studies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Marie-Aude Tribalat
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Olivier P Thomas
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France.,Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain.
| |
Collapse
|
16
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
17
|
Bianco F, Bonora E, Natarajan D, Vargiolu M, Thapar N, Torresan F, Giancola F, Boschetti E, Volta U, Bazzoli F, Mazzoni M, Seri M, Clavenzani P, Stanghellini V, Sternini C, De Giorgio R. Prucalopride exerts neuroprotection in human enteric neurons. Am J Physiol Gastrointest Liver Physiol 2016; 310:G768-75. [PMID: 26893157 PMCID: PMC5243219 DOI: 10.1152/ajpgi.00036.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 01/31/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and its transporters and receptors are involved in a wide array of digestive functions. In particular, 5-HT4 receptors are known to mediate intestinal peristalsis and recent data in experimental animals have shown their role in neuronal maintenance and neurogenesis. This study has been designed to test whether prucalopride, a well-known full 5-HT4 agonist, exerts protective effects on neurons, including enteric neurons, exposed to oxidative stress challenge. Sulforhodamine B assay was used to determine the survival of SH-SY5Y cells, human enteric neurospheres, and ex vivo submucosal neurons following H2O2 exposure in the presence or absence of prucalopride (1 nM). Specificity of 5-HT4-mediated neuroprotection was established by experiments performed in the presence of GR113808, a 5-HT4 antagonist. Prucalopride exhibited a significant neuroprotective effect. SH-SY5Y cells pretreated with prucalopride were protected from the injury elicited by H2O2 as shown by increased survival (73.5 ± 0.1% of neuronal survival vs. 33.3 ± 0.1%, respectively; P < 0.0001) and a significant reduction of proapoptotic caspase-3 and caspase-9 activation in all neurons tested. The protective effect of prucalopride was reversed by the specific 5-HT4 antagonist GR113808. Prucalopride promotes a significant neuroprotection against oxidative-mediated proapoptotic mechanisms. Our data pave the way for novel therapeutic implications of full 5-HT4 agonists in gut dysmotility characterized by neuronal degeneration, which go beyond the well-known enterokinetic effect.
Collapse
Affiliation(s)
- Francesca Bianco
- Department of Veterinary Medical Sciences, University of Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Dipa Natarajan
- Paediatric Gastroenterology, UCL Institute of Child Health, London, UK
| | - Manuela Vargiolu
- BioNanoGenLab Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Italy
| | - Nikhil Thapar
- BioNanoGenLab Health Sciences and Technologies-Interdepartmental Center for Industrial Research, University of Bologna, Italy
| | - Francesco Torresan
- Department of Digestive System, St. Orsola-Malpighi Hospital, Bologna, Italy; and
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences, University of Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Franco Bazzoli
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | - Catia Sternini
- Departments of Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Roberto De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, Italy;
| |
Collapse
|
18
|
Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol Sin 2015; 36:1300-7. [PMID: 26364802 DOI: 10.1038/aps.2015.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/15/2015] [Indexed: 12/25/2022]
Abstract
AIM Parkin has been shown to exert protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in different models of Parkinson disease. In the present study we investigated the molecular mechanisms underlying the neuroprotective action of parkin in vitro. METHODS HEK293, HeLa and PC12 cells were transfected with parkin, parkin mutants, p62 or si-p62. Protein expression and ubiquitination were assessed using immunoblot analysis. Immunoprecipitation assay was performed to identify the interaction between parkin and scaffold protein p62. PC12 and SH-SY5Y cells were treated with 6-OHDA (200 μmol/L), and cell apoptosis was detected using PI and Hoechst staining. RESULTS In HEK293 cells co-transfected with parkin and p62, parkin was co-immunoprecipitated with p62, and parkin overexpression increased p62 protein levels. In parkin-deficient HeLa cells, transfection with wild-type pakin, but not with ligase activity-deficient pakin mutants, significantly increased p62 levels, suggesting that parkin stabilized p62 through its E3 ligase activity. Transfection with parkin or p62 significantly repressed ERK1/2 phosphorylation in HeLa cells, but transfection with parkin did not repress ERK1/2 phosphorylation in p62-knockdown HeLa cells, suggesting that p62 was involved in parkin-induced inhibition on ERK1/2 phosphorylation. Overexpression of parkin or p62 significantly repressed 6-OHDA-induced ERK1/2 phosphorylation in PC12 cells, and parkin overexpression inhibited 6-OHDA-induced apoptosis in PC12 and SH-SY5Y cells. CONCLUSION Parkin protects PC12 cells against 6-OHDA-induced apoptosis via ubiquitinating and stabilizing scaffold protein p62, and repressing ERK1/2 activation.
Collapse
|
19
|
Farmer K, Smith CA, Hayley S, Smith J. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson's Disease. Int J Mol Sci 2015; 16:18865-77. [PMID: 26274953 PMCID: PMC4581276 DOI: 10.3390/ijms160818865] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA), or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes) were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0) and LPC (18:1), which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD.
Collapse
Affiliation(s)
- Kyle Farmer
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Catherine A Smith
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Carleton University Department of Neuroscience, 1125 Colonel By Drive, Life Sciences Research Building, Ottawa, ON K1S 5B6, Canada.
| | - Jeffrey Smith
- Carleton University Department of Chemistry and Institute of Biochemistry, 1125 Colonel By Drive, Steacie Building, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
20
|
Jin X, Liu Q, Jia L, Li M, Wang X. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 2015; 35:323-333. [PMID: 25377066 PMCID: PMC11486251 DOI: 10.1007/s10571-014-0128-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Pinocembrin (PB), the most abundant flavonoid in propolis, has been known to display antioxidant activity. However, the mechanism as how PB can induce antioxidant activity remains elusive. The purpose of the present study was to investigate the potential neuroprotective role of PB and to delineate its mechanism of action against the Parkinson's disease-related neurotoxin 6-hydroxydopamine(6-OHDA)-induced cell death in neuroblastoma SH-SY5Y cells. Results indicate that pretreatment with PB for 4 h significantly reduced the 6-OHDA-induced cell viability loss, apoptotic rate and decreased Bcl-2/Bax ratio. In addition, PB inhibited 6-OHDA-induced oxidative stress as measured by the formation of reactive oxygen species, the level of malondialdehyde, mitochondrial membrane potential, and superoxide dismutase. Moreover, we have revealed the PB treatment resulted in an increase in nuclear factor E2-related factor 2 (Nrf2) protein levels and subsequent activation of antioxidant response element (ARE) pathway genes of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS) in SH-SY5Y cells. Treatment of SH-SY5Y cells with Nrf2 small interference RNA abolished PB-induced HO-1 and γ-GCS expression and its protective effects. Taken together, these findings suggest that PB can protect the SH-SY5Y cells from 6-OHDA-induced oxidative cell death via Nrf2/ARE pathway. Thus, our study indicates that PB has a partial cytoprotective role in dopaminergic cell culture systems.
Collapse
Affiliation(s)
- Xiaohua Jin
- Department of Internal Neurology in the People's Hospital of Zhangqiu, Zhangqiu, 250200, China
| | - Qian Liu
- Department of Internal Neurology in the People's Hospital of Zhangqiu, Zhangqiu, 250200, China
| | - Lili Jia
- Department of Internal Neurology in the People's Hospital of Zhangqiu, Zhangqiu, 250200, China
| | - Meng Li
- Department of Internal Neurology in the People's Hospital of Zhangqiu, Zhangqiu, 250200, China
| | - Xuan Wang
- Department of Internal Neurology in the People's Hospital of Zhangqiu, Zhangqiu, 250200, China.
| |
Collapse
|