1
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
2
|
Zhang D, Dong X, Liu X, Ye L, Li S, Zhu R, Ye Y, Jiang Y. Proteomic Analysis of Brain Regions Reveals Brain Regional Differences and the Involvement of Multiple Keratins in Chronic Alcohol Neurotoxicity. Alcohol Alcohol 2020; 55:147-156. [PMID: 32047899 DOI: 10.1093/alcalc/agaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS Alcohol abuse has attracted public attention and chronic alcohol exposure can result in irreversible structural changes in the brain. The molecular mechanisms underlying alcohol neurotoxicity are complex, mandating comprehensive mining of spatial protein expression profile. METHODS In this study, mice models of chronic alcohol intoxication were established after 95% alcohol vapor administration for 30 consecutive days. On Day 30, striatum (the dorsal and ventral striatum) and hippocampus, the two major brain regions responsible for learning and memorizing while being sensitive to alcohol toxicity, were collected. After that, isobaric tags for relative and absolute quantitation -based quantitative proteomic analysis were carried out for further exploration of the novel mechanisms underlying alcohol neurotoxicity. RESULTS Proteomic results showed that in the striatum, 29 proteins were significantly up-regulated and 17 proteins were significantly down-regulated. In the hippocampus, 72 proteins were significantly up-regulated, while 2 proteins were significantly down-regulated. Analysis of the overlay proteins revealed that a total of 102 proteins were consistently altered (P < 0.05) in both hippocampus and striatum regions, including multiple keratins such as Krt6a, Krt17 and Krt5. Ingenuity pathway analysis revealed that previously reported diseases/biofunctions such as dermatological diseases and developmental disorders were enriched in those proteins. Interestingly, the glucocorticoid receptor (GR) signaling was among the top enriched pathways in both brain regions, while multiple keratins from the GR signaling such as Krt1 and Krt17 exhibited significantly opposite expression patterns in the two brain nuclei. Moreover, there are several other involved pathways significantly differed between the hippocampus and striatum. CONCLUSIONS Our data revealed brain regional differences upon alcohol consumption and indicated the critical involvement of keratins from GR signaling in alcohol neurotoxicity. The differences in proteomic results between the striatum and hippocampus suggested a necessity of taking into consideration brain regional differences and intertwined signaling pathways rather than merely focusing on single nuclei or molecule during the study of drug-induced neurotoxicity in the future.
Collapse
Affiliation(s)
- Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rongzhe Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghong Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Zhang D, Liu X, Dong X, Zhu R, Jiang J, Ye Y, Jiang Y. Cannabinoid 1 Receptor Antagonists Play a Neuroprotective Role in Chronic Alcoholic Hippocampal Injury Related to Pyroptosis Pathway. Alcohol Clin Exp Res 2020; 44:1585-1597. [PMID: 32524615 DOI: 10.1111/acer.14391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use disorders affect millions of people worldwide, and there is growing evidence that excessive alcohol intake causes severe damage to the brain of both humans and animals. Numerous studies on chronic alcohol exposure in animal models have identified that many functional impairments are associated with the hippocampus, which is a structure exhibiting substantial vulnerability to alcohol exposure. However, the precise mechanisms that lead to structural and functional impairments of the hippocampus are poorly understood. Herein, we report a novel cell death type, namely pyroptosis, which accounts for alcohol neurotoxicity in mice. METHODS For this study, we used an in vivo model to induce alcohol-related neurotoxicity in the hippocampus. Adult male C57BL/6 mice were treated with 95% alcohol vapor either alone or in combination with selective cannabinoid receptor antagonists or agonists, and VX765 (Belnacasan), which is a selective caspase-1 inhibitor. RESULTS Alcohol-induced in vivo pyroptosis occurs because of an increase in the levels of pyroptotic proteins such as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), caspase-1, gasdermin D (GSDMD), and amplified inflammatory response. Our results indicated that VX765 suppressed the expression of caspase-1 and inhibited the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Additionally, chronic alcohol intake created an imbalance in the endocannabinoid system and regulated 2 cannabinoid receptors (CB1R and CB2R) in the hippocampus. Specific antagonists of CB1R (AM251 and AM281) significantly ameliorated alcohol-induced pyroptosis signaling and inactivated the inflammatory response. CONCLUSIONS Alcohol induces hippocampal pyroptosis, which leads to neurotoxicity, thereby indicating that pyroptosis may be an essential pathway involved in chronic alcohol-induced hippocampal neurotoxicity. Furthermore, cannabinoid receptors are regulated during this process, which suggests promising therapeutic strategies against alcohol-induced neurotoxicity through pharmacologic inhibition of CB1R.
Collapse
Affiliation(s)
- Dingang Zhang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaochen Liu
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoru Dong
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongzhe Zhu
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieqing Jiang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghong Ye
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan Jiang
- From the, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Danshen formula granule and salvianic acid A alleviate ethanol-induced neurotoxicity. J Nat Med 2019; 74:399-408. [PMID: 31828593 DOI: 10.1007/s11418-019-01379-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
As a direct neurotoxin, ethanol exposure is associated with nerve damage and dysfunction of central nervous system (CNS) and induced obvious neurotoxicity by increasing the reactive oxygen species (ROS) production, activation of endogenous apoptotic as well as necrotic signals, and other molecular mechanisms. The previous studies had demonstrated that natural herbal medicine offers protective effectiveness on ethanol-induced nerve cell damage. Danshen and its extracts have been known to have an antioxidant property and neuroprotective effects. However, the protective effects of Danshen formula granule and salvianic acid A on ethanol-induced neurotoxicity remain unknown. In this study, we found that the Danshen formula granule and salvianic acid A significantly inhibited the ethanol-induced cell death, blocked LDH release, and reduced dendritic spine loss. Furthermore, the intracellular ROS, MDA production, and ethanol-induced apoptosis were significantly ameliorated with Danshen formula granule and salvianic acid A pretreatment by increasing the antioxidant enzymatic activity of CAT, SOD and GSH-Px, and inhibiting apoptotic pathways. In addition, Danshen formula granule and salvianic acid A pretreatment obviously inhibit the apoptotic pathways by regulating the protein expression of Bcl-2, Bax, and Caspase-3. In conclusion, our data demonstrated that the Danshen formula granule and salvianic acid A provide a significantly protective effectiveness against ethanol-induced neurotoxicity, which might be a potential therapeutic drug for ethanol-induced neurological disorders.
Collapse
|
5
|
Botalova A, Bombela T, Zubov P, Segal M, Korkotian E. The flavonoid acetylpectolinarin counteracts the effects of low ethanol on spontaneous network activity in hippocampal cultures. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:22-28. [PMID: 30287194 DOI: 10.1016/j.jep.2018.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A major concern in modern society involves the lasting detrimental behavioral effects of exposure to alcoholic beverages. Consequently, hundreds of folk remedies for hangover have been suggested, most of them without a scientific basis, for lack of proper test systems. Over centuries, yellow toadflax (Linaria vulgaris Mill., Lv) tincture has been used in Russian traditional medicine to treat the spectrum of hangover symptoms such as vertigo, headache, drunken behaviors, and as a sedative. MATERIALS AND METHODS Here we use in-vitro cultured hippocampal neurons to examine the effect of the Lv extract as well as the flavonoid acetylpectolinarin (ACP) exclusively found in Lv extract, on spontaneous network activity of the cultured neurons exposed to low, physiological concentrations of ethanol. RESULTS As in previous studies, low (0.25-0.5%) ethanol causes an increase in network activity, which was converted to suppression, with high concentrations of ethanol. Lv extract and ACP, at low concentrations, had no appreciable effect on spontaneous activity, but they blocked the facilitating action of low ethanol. This action of ACP was also seen when the culture was exposed to 1-EBIO, a SK potassium channel opener, and was blocked by apamin, an SK channel antagonist. In contrast, ACP or Lv extracts did not reverse the suppressive effects of higher ethanol. CONCLUSIONS Our results suggest that ACP acts by interacting with the SK channel, to block the facilitatory effect of low concentration of ethanol, on network activity in hippocampal cultures.
Collapse
Affiliation(s)
- Alena Botalova
- Department of Zoology, Perm State University, Perm, Russia
| | - Tatyana Bombela
- Department of Botany, Perm Pharmaceutical Academy, Perm, Russia
| | - Peter Zubov
- Department of Botany, Perm Pharmaceutical Academy, Perm, Russia
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute Rehovot, Israel
| | - Eduard Korkotian
- Department of Zoology, Perm State University, Perm, Russia; Department of Neurobiology, The Weizmann Institute Rehovot, Israel.
| |
Collapse
|
6
|
Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11:90. [PMID: 28424592 PMCID: PMC5380733 DOI: 10.3389/fncel.2017.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood.
Collapse
Affiliation(s)
- Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria F Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Eduardo Karahanian
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Cesar Osorio-Fuentealba
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Facultad de Kinesiología, Artes y Educación Física, Universidad Metropolitana de Ciencias de la EducaciónSantiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
7
|
Pereira PA, Rocha JP, Cardoso A, Vilela M, Sousa S, Madeira MD. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus. Neurotoxicology 2016; 54:153-160. [DOI: 10.1016/j.neuro.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
|