1
|
Cao XW, Yang H, Liu XM, Lou SY, Kong LP, Rong LQ, Shan JJ, Xu Y, Zhang QX. Blocking postsynaptic density-93 binding to C-X3-C motif chemokine ligand 1 promotes microglial phenotypic transformation during acute ischemic stroke. Neural Regen Res 2022; 18:1033-1039. [PMID: 36254989 PMCID: PMC9827769 DOI: 10.4103/1673-5374.355759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that postsynaptic density-93 mediates neuron-microglia crosstalk by interacting with amino acids 357-395 of C X3 C motif chemokine ligand 1 (CX3CL1) to induce microglia polarization. More importantly, the peptide Tat-CX3CL1 (comprising amino acids 357-395 of CX3CL1) disrupts the interaction between postsynaptic density-93 and CX3CL1, reducing neurological impairment and exerting a protective effect in the context of acute ischemic stroke. However, the mechanism underlying these effects remains unclear. In the current study, we found that the pro-inflammatory M1 phenotype increased and the anti-inflammatory M2 phenotype decreased at different time points. The M1 phenotype increased at 6 hours after stroke and peaked at 24 hours after perfusion, whereas the M2 phenotype decreased at 6 and 24 hours following reperfusion. We found that the peptide Tat-CX3CL1 (357-395aa) facilitates microglial polarization from M1 to M2 by reducing the production of soluble CX3CL1. Furthermore, the a disintegrin and metalloprotease domain 17 (ADAM17) inhibitor GW280264x, which inhibits metalloprotease activity and prevents CX3CL1 from being sheared into its soluble form, facilitated microglial polarization from M1 to M2 by inhibiting soluble CX3CL1 formation. Additionally, Tat-CX3CL1 (357-395aa) attenuated long-term cognitive deficits and improved white matter integrity as determined by the Morris water maze test at 31-34 days following surgery and immunofluorescence staining at 35 days after stroke, respectively. In conclusion, Tat-CX3CL1 (357-395aa) facilitates functional recovery after ischemic stroke by promoting microglial polarization from M1 to M2. Therefore, the Tat-CX3CL1 (357-395aa) is a potential therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Xiao-Wei Cao
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, China,Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu Province, China,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu Province, China,Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu Province, China,Department of Neurology, Lianyungang Municipal Hospital, Affiliated Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| | - Hui Yang
- Department of Neurosurgery of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, China,Department of Neurosurgery, Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Mei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shi-Ying Lou
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, China,Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu Province, China,Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Li-Ping Kong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liang-Qun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jun-Jun Shan
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, China,Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu Province, China,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu Province, China,Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu Province, China
| | - Qing-Xiu Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, China,Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu Province, China,Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu Province, China,Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu Province, China,Correspondence to: Qing-Xiu Zhang, .
| |
Collapse
|
2
|
Zeng M, Feng A, Li M, Liu M, Guo P, Zhang Y, Zhang Q, Zhang B, Cao B, Jia J, Wang R, Lyu J, Zheng X. Corallodiscus flabellata B. L. Burtt extract and isonuomioside A ameliorate Aβ 25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy via the NMDAR2B/CamK Ⅱ/PKG pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154114. [PMID: 35489325 DOI: 10.1016/j.phymed.2022.154114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Corallodiscus flabellata B. L. Burtt, a traditional Chinese folk medicine used for amnesia, can significantly improve brain injury; however, its active components and underlying mechanism of action remain unclear. OBJECTIVE To examine the effects and underlying mechanism of action of Corallodiscus flabellata B. L. Burtt (SDC) extract and isolated isonuomioside A (isA) on Aβ25-35-induced brain injury. METHODS SDC extract (155 mg/kg, i.g.) or IsA (20 mg/kg, i.g.) was administered over a period of 4 weeks, following which brain injury was induced by Aβ25-35 infusion (200 µM, 3 µl/20 g, i.c.v.). Network pharmacology research gathered existing data on the effects of SDC on Alzheimer's disease. Learning and memory ability, neuronal damage, and the levels of Aβ1-42/Aβ1-40, p-Tau, apoptosis, oxidative stress, autophagy, immune cells, NMDAR2B, p-CamK Ⅱ, and PKG were examined. Furthermore, the antagonistic effect of MK-801 (NMDA receptor blocker, 10 µM) in the presence of isA (10 µM) or SDC extract (20 µg/ml) was investigated in Aβ25-35 (20 µM, 24 h)-induced PC-12 and N9 cells to evaluate whether the observed effects elicited by isA and SDC extract were mediated via the NMDAR2B/CamK Ⅱ/PKG pathway. RESULTS IsA and SDC extract improved learning and memory ability, reduced neuronal damage, downregulated Aβ1-42/Aβ1-40, p-Tau, apoptosis, oxidative stress, and autophagy, transformed immune cells, and increased the expression levels of NMDAR2B, p-CamK Ⅱ, and PKG following Aβ25-35 challenge. Moreover, MK-801 blocked the effects of isA and SDC extract on apoptosis, ROS levels, and autophagy in Aβ25-35-induced N9 and PC-12 cells, indicating that isA and SDC extract likely exert neuroprotective effects via the NMDAR2B/CamK Ⅱ/PKG pathway. CONCLUSION IsA and SDC extract ameliorate Aβ25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy, which likely occurs via the NMDAR2B/CamK Ⅱ/PKG pathway. These findings may help to elucidate new therapeutic targets and facilitate the development of drugs for the clinical treatment of AD.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Aozi Feng
- Department of Clinical Research, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jun Lyu
- Department of Clinical Research, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| |
Collapse
|
3
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
5
|
PSD-93 Interacts with SynGAP and Promotes SynGAP Ubiquitination and Ischemic Brain Injury in Mice. Transl Stroke Res 2020; 11:1137-1147. [DOI: 10.1007/s12975-020-00795-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 01/14/2023]
|
6
|
MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93. Biochem Biophys Res Commun 2019; 517:69-76. [DOI: 10.1016/j.bbrc.2019.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
|
7
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
8
|
Tang M, Liu P, Li X, Wang JW, Zhu XC, He FP. Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles. Neurol Res 2017; 39:612-620. [PMID: 28398146 DOI: 10.1080/01616412.2016.1275096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Min Tang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-wen Wang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiong-chao Zhu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-ping He
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|