1
|
Thunberg P, Wastensson G, Lidén G, Adjeiwaah M, Tellman J, Bergström B, Fornander L, Lundberg P. Welding techniques and manganese concentrations in blood and brain: Results from the WELDFUMES study. Neurotoxicology 2024; 105:121-130. [PMID: 39326638 DOI: 10.1016/j.neuro.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders' workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.
Collapse
Affiliation(s)
- Per Thunberg
- Center for Experimental and Biomedical Imaging in Örebro (CEBIO), Örebro University, Örebro, Sweden; Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Gunilla Wastensson
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Lidén
- Department of Environment Science, Stockholm University, Stockholm, Sweden
| | - Mary Adjeiwaah
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jens Tellman
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bernt Bergström
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, Sweden
| | - Louise Fornander
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Peter Lundberg
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Nossa G, Monsivais H, Lee CG, Francis G, Wells EM, Park JH, Dydak U. Do toenail manganese and iron levels reflect brain metal levels or brain metabolism in welders? Neurotoxicology 2024; 104:45-55. [PMID: 39002648 DOI: 10.1016/j.neuro.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Inhalation of welding fumes can cause metal accumulation in the brain, leading to Parkinsonian-like symptoms. Metal accumulation and altered neurochemical profiles have been observed using magnetic resonance imaging (MRI) in highly exposed welders, being associated with decreased motor function and cognition. While MRI is impractical to use as a health risk assessment tool in occupational settings, toenail metal levels are easier to assess and have been demonstrated to reflect an exposure window of 7-12 months in the past. Yet, it is unclear whether toenail metal levels are associated with brain metal levels or changes in metabolism, which are the root of potential health concerns. This study investigates whether toenail manganese (Mn) and iron (Fe) levels, assessed at several time points, correlate with brain Mn and Fe levels, measured by MRI, as well as brain GABA, glutamate (Glu), and glutathione (GSH) levels, measured by Magnetic Resonance Spectroscopy (MRS), in seventeen Mn-exposed welders. Quantitative T1 and R2* MRI maps of the whole brain, along with GABA, Glu, and GSH MRS measurements from the thalamus and cerebellum were acquired at baseline (T0). Toenail clippings were collected at T0 and every three months after the MRI for a year to account for different exposure periods being reflected by toenail clippings and MRI. Spearman correlations of toenail metal levels were run against brain metal and metabolite levels, but no significant associations were found for Mn at any timepoint. Cerebellar GSH positively correlated with toenail Fe clipped twelve months after the MRI (p = 0.05), suggesting an association with Fe exposure at the time of the MRI. Neither thalamic GABA nor Glu correlated with toenail Fe levels. In conclusion, this study cannot support toenail Mn as a proxy for brain Mn levels or metabolic changes, while toenail Fe appears linked to brain metabolic alterations, underscoring the importance of considering other metals, including Fe, in studying Mn neurotoxicity.
Collapse
Affiliation(s)
- Gianna Nossa
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Humberto Monsivais
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Chang Geun Lee
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Grace Francis
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Ellen M Wells
- School of Health Sciences, Purdue University, West Lafayette, IN, United States; Department of Public Health, Purdue University, West Lafayette, IN, United States
| | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Monsivais H, Yeh CL, Edmondson A, Harold R, Snyder S, Wells EM, Schmidt-Wilcke T, Foti D, Zauber SE, Dydak U. Whole-brain mapping of increased manganese levels in welders and its association with exposure and motor function. Neuroimage 2024; 288:120523. [PMID: 38278427 PMCID: PMC11124758 DOI: 10.1016/j.neuroimage.2024.120523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Although manganese (Mn) is a trace metal essential for humans, chronic exposure to Mn can cause accumulation of this metal ion in the brain leading to an increased risk of neurological and neurobehavioral health effects. This is a concern for welders exposed to Mn through welding fumes. While brain Mn accumulation in occupational settings has mostly been reported in the basal ganglia, several imaging studies also revealed elevated Mn in other brain areas. Since Mn functions as a magnetic resonance imaging (MRI) T1 contrast agent, we developed a whole-brain MRI approach to map in vivo Mn deposition differences in the brains of non-exposed factory controls and exposed welders. This is a cross-sectional analysis of 23 non-exposed factory controls and 36 exposed full-time welders from the same truck manufacturer. We collected high-resolution 3D MRIs of brain anatomy and R1 relaxation maps to identify regional differences using voxel-based quantification (VBQ) and statistical parametric mapping. Furthermore, we investigated the associations between excess Mn deposition and neuropsychological and motor test performance. Our results indicate that: (1) Using whole-brain MRI relaxometry methods we can generate excess Mn deposition maps in vivo, (2) excess Mn accumulation due to occupational exposure occurs beyond the basal ganglia in cortical areas associated with motor and cognitive functions, (3) Mn likely diffuses along white matter tracts in the brain, and (4) Mn deposition in specific brain regions is associated with exposure (cerebellum and frontal cortex) and motor metrics (cerebellum and hippocampus).
Collapse
Affiliation(s)
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Takeda Pharmaceutical Company Ltd, Cambridge, MA, USA
| | - Alex Edmondson
- Cincinnati Children's Hospital Medical Center, Imaging Research Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH USA
| | - Roslyn Harold
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Sandy Snyder
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Ellen M Wells
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Public Health, Purdue University, West Lafayette, IN, USA
| | - Tobias Schmidt-Wilcke
- Department of Neurology, St. Mauritius Therapieklinik, Meerbusch, Germany; Institute of Clinical Neuroscience and Medical Psychology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Dan Foti
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Zhang K, He K, Xu J, Nie L, Li S, Liu J, Long D, Dai Z, Yang X. Manganese exposure causes movement deficit and changes in the protein profile of the external globus pallidus in Sprague Dawley rats. Toxicol Ind Health 2021; 37:715-726. [PMID: 34706592 DOI: 10.1177/07482337211022223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) is required for normal brain development and function. Excess Mn may trigger a parkinsonian movement disorder but the underlying mechanisms are incompletely understood. We explored changes in the brain proteomic profile and movement behavior of adult Sprague Dawley (SD) rats systemically treated with or without 1.0 mg/mL MnCl2 for 3 months. Mn treatment significantly increased the concentration of protein-bound Mn in the external globus pallidus (GP), as demonstrated by inductively coupled plasma mass spectrometry. Behavioral study showed that Mn treatment induced movement deficits, especially of skilled movement. Proteome analysis by two-dimensional fluorescence difference gel electrophoresis coupled with mass spectrometry revealed 13 differentially expressed proteins in the GP of Mn-treated versus Mn-untreated SD rats. The differentially expressed proteins were mostly involved in glycolysis, metabolic pathways, and response to hypoxia. Selected pathway class analysis of differentially expressed GP proteins, which included phosphoglycerate mutase 1 (PGAM1), primarily identified enrichment in glycolytic process and innate immune response. In conclusion, perturbation of brain energy production and innate immune response, in which PGAM1 has key roles, may contribute to the movement disorder associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Kaiqin Zhang
- School of Public Health, University of South China, Hunan Hengyang, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jia Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dingxin Long
- School of Public Health, University of South China, Hunan Hengyang, China
| | - Zhongliang Dai
- The department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
5
|
Martin KV, Edmondson D, Cecil KM, Bezi C, Vance ML, McBride D, Haynes EN. Manganese Exposure and Neurologic Outcomes in Adult Populations. Neurol Clin 2020; 38:913-936. [PMID: 33040869 PMCID: PMC8978550 DOI: 10.1016/j.ncl.2020.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A review of published articles examining the effects of manganese exposure to workers and community residents shows adverse neurologic outcomes. Innovative biomarkers, including those from neuroimaging, were incorporated into many of these studies to assess both manganese exposure and neurologic outcomes. A variety of health effects were evaluated, including cognitive and motor impairments. Studies of community participants residing near manganese point sources show variability in outcomes, reflecting the complexities of exposure measurement, individual absorption, and assessment of neurologic effects. The aging population provides insight into the impacts of chronic exposure in younger populations.
Collapse
Affiliation(s)
- Kaitlin V Martin
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue Room 212C, Lexington, KY 40536, USA.
| | - David Edmondson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH 45229, USA
| | - Kim M Cecil
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 5033, Cincinnati, OH 45229, USA; Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cassandra Bezi
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45229, USA
| | - Miriam Leahshea Vance
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA
| | - Dani McBride
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Erin N Haynes
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Avenue Room 212G, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Edmondson DA, Yeh CL, Hélie S, Dydak U. Whole-brain R1 predicts manganese exposure and biological effects in welders. Arch Toxicol 2020; 94:3409-3420. [PMID: 32875357 DOI: 10.1007/s00204-020-02839-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
Manganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration (GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. Finally, we used an SVM to predict age as a method of verifying that the results could be attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with accuracies ranging between 75 and 82% with recall between 94.7% and 76.9% but was not predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 mg/m3 and < 18 years of welding on the job) do not produce discernable signatures, whereas higher air exposures and subjects with more total years welding produce signatures in the brain that are readily identifiable using SVM.
Collapse
Affiliation(s)
- David A Edmondson
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sébastien Hélie
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA. .,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Edmondson DA, Ma RE, Yeh CL, Ward E, Snyder S, Azizi E, Zauber SE, Wells EM, Dydak U. Reversibility of neuroimaging markers influenced by lifetime occupational manganese exposure. Toxicol Sci 2019; 172:181-190. [PMID: 31388678 PMCID: PMC6813746 DOI: 10.1093/toxsci/kfz174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn) is a neurotoxicant that many workers are exposed to daily. There is limited knowledge about how changes in exposure levels impact measures in magnetic resonance imaging (MRI). We hypothesized that changes in Mn exposure would be reflected by changes in the MRI relaxation rate R1 and thalamic γ-aminobutyric acid (GABAThal). As part of a prospective cohort study, 17 welders were recruited and imaged on two separate occasions approximately two years apart. MRI relaxometry was used to assess changes of Mn accumulation in the brain. Additionally, GABA was measured using magnetic resonance spectroscopy (MRS) in the thalamic and striatal regions of the brain. Air Mn exposure ([Mn]Air) and cumulative exposure indexes of Mn (Mn-CEI) for the past three months (Mn-CEI3M), past year (Mn-CEI12M), and lifetime (Mn-CEILife) were calculated using personal air sampling and a comprehensive work history, while toenails were collected for analysis of internal Mn body burden. Finally, welders' motor function was examined using the Unified Parkinson's Disease Rating Scale (UPDRS). Median exposure decreased for all exposure measures between the first and second scan. ΔGABAThal was significantly correlated with ΔMn-CEI3M (ρ = 0.66, adjusted p = 0.02), ΔMn-CEI12M (ρ = 0.70, adjusted p = 0.006) , and Δ[Mn]Air (ρ = 0.77, adjusted p = 0.002). ΔGABAThal significantly decreased linearly with ΔMn-CEI3M (quantile regression, β = 15.22, p = 0.02) as well as Δ[Mn]Air (β = 1.27, p = 0.04). Finally, Mn-CEILife interacted with Δ[Mn]Air in the substantia nigra where higher Mn-CEILife lessened the ΔR1 per Δ[Mn]Air (F-test, p = 0.005). While R1 and GABA changed with Mn exposure, UPDRS was unaffected. In conclusion, our study shows that effects from changes in Mn exposure are reflected in thalamic GABA levels and brain Mn levels, as measured by R1, in most brain regions.
Collapse
Affiliation(s)
- David A Edmondson
- School of Health Sciences, Purdue University, West Lafayette, IN.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Ruoyun E Ma
- School of Health Sciences, Purdue University, West Lafayette, IN.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Eric Ward
- School of Health Sciences, Purdue University, West Lafayette, IN
| | - Sandy Snyder
- School of Health Sciences, Purdue University, West Lafayette, IN
| | - Elham Azizi
- Department of Neurology, Ochsner Medical Center, Kenner, LA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
| | - Ellen M Wells
- School of Health Sciences, Purdue University, West Lafayette, IN.,Public Health Graduate Program, Purdue University, West Lafayette, IN
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Sarkar S, Malovic E, Jin H, Kanthasamy A, Kanthasamy AG. The role of manganese in neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Ou SY, Luo HL, Mailman RB, Li ZC, Zhang YW, Cai M, Huang XW, Li SJ, Jiang YM. Effect of manganese on neural endocrine hormones in serum of welders and smelters. J Trace Elem Med Biol 2018; 50:1-7. [PMID: 30262264 DOI: 10.1016/j.jtemb.2018.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although manganese (Mn)-induced neurotoxicity effects are well known among occupational Mn exposure, few reports have investigated the effects on endocrine systems among welders and smelters. OBJECTIVE To determine the effect of high level occupational manganese (Mn) exposure on neuropsychological parameters and hormonal status. METHODS We used a cross-sectional design with 52 welders, 48 smelters and 43 age-matched office workers from the same factory in China. We analyzed serum endocrine hormones level and airborne Mn concentrations. Erythrocyte and urine Mn levels were quantified using inductively-coupled plasma atomic emission spectroscopy. RESULTS The geometric mean of air Mn concentrations for the welders and smelters were 19.7 and 273.1 μg/m3, respectively. Mn concentrations in erythrocytes of smelters were markedly greater than those in controls and welders, but there was no difference between the erythrocytes Mn levels of Control and welders. We also found an increase of Mn levels in the urine of both welders and smelters vs. controls; Mn levels in urine of smelters were higher than in welders. Self-reported neurobehavioral symptoms were higher in welders and smelters than in controls. Finally, thyroid-stimulating hormone (TSH) levels of welders were significantly lower than in controls, whereas smelters had lower prolactin (PRL), testosterone (TST) and follicle-stimulating hormone (FSH) concentrations than either controls or welders. CONCLUSIONS These results show that smelters have higher Mn exposure than do welders, and that Mn levels in erythrocytes or urine can be a marker for exposure. Moreover, high level occupational Mn exposure increases adverse neurobehavioral effects, and also may disrupt endocrine systems.
Collapse
Affiliation(s)
- Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Hai-Lan Luo
- Department of Health Toxicology and Functional Testing, Guangxi Center for Disease Control and Prevention, Nanning 530021, Guangxi, China.
| | - Richard B Mailman
- Departments of Pharmacology and Neurology, Penn State College of Medicine 500 University Drive, Hershey, PA, 17033-0850, USA.
| | - Zhao-Cong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yu-Wen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Mei Cai
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
10
|
Bailey LA, Kerper LE, Goodman JE. Derivation of an occupational exposure level for manganese in welding fumes. Neurotoxicology 2018. [DOI: 10.1016/j.neuro.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
12
|
Abstract
Although an essential nutrient, manganese (Mn) can be toxic at high doses. There is, however, uncertainty regarding the effects of chronic low-level Mn-exposure. This review provides an overview of Mn-related brain and functional changes based on studies of a cohort of asymptomatic welders who had lower Mn-exposure than in most previous work. In welders with low-level Mn-exposure, we found: 1) Mn may accumulate in the brain in a non-linear fashion: MRI R1 (1/T1) signals significantly increased only after a critical level of exposure was reached (e.g., ≥300 welding hours in the past 90days prior to MRI). Moreover, R1 may be a more sensitive marker to capture short-term dynamic changes in Mn accumulation than the pallidal index [T1-weighted intensity ratio of the globus pallidus vs. frontal white matter], a traditional marker for Mn accumulation; 2) Chronic Mn-exposure may lead to microstructural changes as indicated by lower diffusion tensor fractional anisotropy values in the basal ganglia (BG), especially when welding years exceeded more than 30 years; 3) Mn-related subtle motor dysfunctions can be captured sensitively by synergy metrics (indices for movement stability), whereas traditional fine motor tasks failed to detect any significant differences; and 4) Iron (Fe) also may play a role in welding-related neurotoxicity, especially at low-level Mn-exposure, evidenced by higher R2* values (an estimate for brain Fe accumulation) in the BG. Moreover, higher R2* values were associated with lower phonemic fluency performance. These findings may guide future studies and the development of occupation- and public health-related polices involving Mn-exposure.
Collapse
|
13
|
A screening tool to detect clinical manganese neurotoxicity. Neurotoxicology 2017; 64:12-18. [PMID: 28274800 DOI: 10.1016/j.neuro.2017.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) over-exposure in occupational settings is associated with basal ganglia toxicity and a movement disorder characterized by parkinsonism (i.e., the signs and symptoms of Parkinson disease). A simple test to help non-neurologists identify workers with clinical Mn neurotoxicity represents an unmet need. In a cohort of Mn-exposed workers from welding worksites, with extensive clinical data, we developed a linear regression model to predict the Unified Parkinson Disease Rating Scale motor subsection part 3 (UPDRS3) score. We primarily considered factors easily obtained in a primary care or occupational medicine clinic, specifically easily assessed signs of parkinsonism and factors likely to be associated with UPDRS3 such as age, timed motor task results, and selected symptoms/conditions. Secondarily we considered other demographic variables and welding exposure. We based the model on 596 examined workers age≤65years and with timed motor task data. We selected the model based on simplicity for clinical application, biologic plausibility, and statistical significance and magnitude of regression coefficients. The model contained age, timed motor task scores for each hand, and indicators of action tremor, speech difficulty, anxiety, depression, loneliness, pain and current cigarette smoking. When we examined how well the model identified workers with clinically significant parkinsonism (UPDRS3≥15) the receiver operating characteristic area under the curve (AUC) was 0.72 (95% confidence interval [CI] 0.67, 0.77). With a cut point that provided 80% sensitivity, specificity was 52%, the positive predictive value in our cohort was 29%, and the negative predictive value was 92%. Using the same cut point for predicted UPDRS3, the AUC was nearly identical for UPDRS3≥10, and was 0.83 (95% CI 0.76, 0.90) for UPDRS3≥20. Since welding exposure data was not required after including its putative effects, this model may help identify workers with clinically significant Mn neurotoxicity in a variety of settings, as a first step in a tiered occupational screening program.
Collapse
|