1
|
Tali A, Lekouch N, Ahboucha S. Lambda-cyhalothrin alters locomotion, mood and memory abilities in Swiss mice. Food Chem Toxicol 2024; 188:114680. [PMID: 38677402 DOI: 10.1016/j.fct.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Lambda-cyhalothrin (LCT) is a type II pyrethroid widely used in agriculture for plant protection against pests. However, pyrethroids represents a risk for rural female farmworkers, and few studies addressed LCT-behavioural alterations in mice. The present study evaluates the effect of LCT on behaviour of eight weeks aged female mice. Mice were divided into three groups including treated mice that received through gavage (i) 0.5 mg/kg bw and (ii) 2 mg/kg of LCT dissolved in corn oil, and (iii) the vehicle controls. Behavioural tests assess the locomotor activity using open field test, the anxiety by the dark-light box test, the learning memory with novel object recognition test, the memory retention by the elevated plus maze test, and the spatial working memory using the Y-maze test. Subacute treatment with low doses of LCT decreases total distance travelled, induces anxiogenic effect by reducing the time spent in the enlightened compartment, alters memory retention by increasing the latency time, and also affects learning memory by reducing the recognition index parameter. However, LCT does not significantly alter spatial working memory. In conclusion, LCT-treated female mice show an alteration in locomotor activity, mood state and memory abilities probably related to oxidative stress and altered neurotransmission.
Collapse
Affiliation(s)
- Assmaa Tali
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Research Team: Technological Applications, Environmental Resources and Health, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, PB, 145-25000, Morocco
| | - Nadra Lekouch
- Laboratory of Water, Biodiversity and Climate Change, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd: Moulay Abdellah, BP, 2390-40001, Marrakech, Morocco
| | - Samir Ahboucha
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Research Team: Technological Applications, Environmental Resources and Health, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, PB, 145-25000, Morocco.
| |
Collapse
|
2
|
Xi C, Shi X, Wang Y, He J, Jiang S, Niu B, Chen Y, Zhao F, Cao Z. Influence of bifenthrin exposure at different gestational stages on the neural development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115365. [PMID: 37597292 DOI: 10.1016/j.ecoenv.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Perinatal exposure to bifenthrin (BF) alters neurodevelopment. However, the most susceptible time period to BF exposure and the possible mechanisms are not clear. In the current study, pregnant female mice were treated with BF (0.5 mg/kg/d) at three different stages [gestational day (GD) 0-5, 6-15 and 16-birth (B)] and neurologic deficits were evaluated in offspring mice. BF exposure at GD 16-B significantly altered the locomotor activity and caused learning and memory impairments in 6-week-old offspring. Gestational BF exposure also caused neuronal loss in the region of cornu ammonis of hippocampi of 6-week-old offspring. Interestingly, neurobehavioral impairments and neuronal loss were not observed in offspring at 10-week-old. BF exposure at GD 16-B also decreased protein levels of VGluT1, NR1 and NR2A while increased the protein levels of NR2B and VGAT1, as well as the gene levels of Il-1β, Il-6 and Tnf-α in hippocampi of 6-week-old offspring. Collectively, these data demonstrate that gestational exposure to a low dose BF causes neurodevelopmental deficits that remit with the age and the late-stage of pregnancy is the most susceptible time window to BF exposure. Imbalance in excitatory/inhibitory neuronal transmission, altered expression levels of NMDA receptors and increased neural inflammation may be associated with BF prenatal exposure-triggered neurobehavioral impairments.
Collapse
Affiliation(s)
- Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xiaoqian Shi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Shan Jiang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Bo Niu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Ying Chen
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| |
Collapse
|
3
|
Srivastava A, Kumari A, Jagdale P, Ayanur A, Pant AB, Khanna VK. Potential of Quercetin to Protect Cadmium Induced Cognitive Deficits in Rats by Modulating NMDA-R Mediated Downstream Signaling and PI3K/AKT-Nrf2/ARE Signaling Pathways in Hippocampus. Neuromolecular Med 2023; 25:426-440. [PMID: 37460789 DOI: 10.1007/s12017-023-08747-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 09/22/2023]
Abstract
Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk1/2, GSK3β, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.
Collapse
Affiliation(s)
- Anugya Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anima Kumari
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Regulatory Toxicology Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Area, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
4
|
Kumari A, Srivastava A, Jagdale P, Ayanur A, Khanna VK. Lambda-cyhalothrin enhances inflammation in nigrostriatal region in rats: Regulatory role of NF-κβ and JAK-STAT signaling. Neurotoxicology 2023; 96:101-117. [PMID: 37060950 DOI: 10.1016/j.neuro.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1β, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kβ (P65, Iκβ, IKKα, IKKβ) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κβ and JAK/STAT signaling.
Collapse
Affiliation(s)
- Anima Kumari
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anugya Srivastava
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
5
|
Yang D, Sun X, Wei X, Zhang B, Fan X, Du H, Zhu R, Oh Y, Gu N. Lambda-cyhalothrin induces lipid accumulation in mouse liver is associated with AMPK inactivation. Food Chem Toxicol 2023; 172:113563. [PMID: 36529352 DOI: 10.1016/j.fct.2022.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lambda-cyhalothrin (LCT) is a critical synthetic Type II pyrethroid insecticide widely applied. Several studies suggest pyrethroids could induce fat accumulation, promote adipogenesis, and impair liver function. Now, the influences of LCT on the hepatic lipid metabolism and the cellular mechanism is still unknown. AMPK has important function in regulating cellular energy balance. To indicate the potential pathogenesis of liver injury caused by LCT exposure, ICR mice were orally administrated with LCT at a dose of 0.4 mg/kg and 2 mg/kg. The results suggest that LCT induced obesity, dyslipidemia and hepatic steatosis. In addition, LCT also induced oxidative stress, liver function injury, and disorganized structure of the liver. Furthermore, upregulation of PPARγ, FASN, and SREBP1c expression, as well as reduction of PPARα and FGF21 expression, bringing with decreases of phosphorylated ratios of AMPK and ACC were found in LCT-L group. These results indicate that LCT at 0.4 mg/kg could result in dyslipidemia and hepatic steatosis in mice. In addition, activation of AMPK in hepatocytes effectively attenuated the effects of LCT. The detailed mechanism of LCT-induced hepatic steatosis is associated with AMPK and its downsteam genes. Activation of AMPK might be a novel protection against the progression of hepatic steatosis induced by LCT.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaotong Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Xi C, Yang Z, Yu Y, Li S, He J, El-Aziz TMA, Zhao F, Cao Z. Influence of perinatal deltamethrin exposure at distinct developmental stages on motor activity, learning and memory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113460. [PMID: 35378399 DOI: 10.1016/j.ecoenv.2022.113460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perinatal exposure to deltamethrin (DM) causes attention-deficit/ hyperactivity disorder-like behaviors. However, the vulnerable time window to DM exposure and the possible mechanism are obscure. We aimed to identify the critical window(s) at perinatal stages for DM exposure and the possible mechanism. METHOD Pregnant mice were exposed to DM (0.5 mg/kg) at three different prenatal stages [gestational day (GD) 0-5, 6-15 and 16-birth (16-B)] and early postnatal stage (PD 0-10). Locomotor activity, learning and memory were evaluated using open field and Y-maze test, respectively. Nissl staining and western blots were used to examine the neuronal loss and the protein expression, respectively. RESULTS Perinatal exposures to DM had no effect on reproductive and growth index of offspring. However, mice receiving DM exposure during GD 16-B displayed significantly higher mortality suggesting GD 16-B is the most vulnerable time window to DM exposure. Prenatal but not early postnatal DM exposure impaired locomotor activity, learning and memory, and caused neuron loss in the dentate gyrus of male offspring. However, neither prenatal nor postnatal DM exposure affected mouse behavior of female offspring. Prenatal DM exposures decreased the protein levels of NR2A and NR2B in both hippocampi and cerebral cortices of male offspring. However, female mice receiving DM exposure at GD 16-B but not other stages displayed increased expression levels of NR2A and NR2B in hippocampi. CONCLUSION Prenatal but not early postnatal DM exposure impairs the neuron development in male but not female mice. Altered NMDA receptor expression may correlate to DM-induced behavioral deficits.
Collapse
Affiliation(s)
- Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Zhao Yang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Yiyi Yu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Shaoheng Li
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China.
| |
Collapse
|
7
|
Baghel MS, Singh B, Dhuriya YK, Shukla RK, Patro N, Khanna VK, Patro IK, Thakur MK. Postnatal exposure to poly (I:C) impairs learning and memory through changes in synaptic plasticity gene expression in developing rat brain. Neurobiol Learn Mem 2018; 155:379-389. [PMID: 30195050 DOI: 10.1016/j.nlm.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Viral infection during early stage of life influences brain development and results in several neurodevelopmental disorders such as schizophrenia, autism and behavioral abnormalities. However, the mechanism through which infection causes long-term behavioral defects is not well known. To elucidate this, we have used synthetic polyinosinic-polycytidylic acid [poly (I:C)] which acts as a dsRNA molecule and interacts with toll-like receptor-3 (TLR-3) of microglia cells to evoke the immune system, thus mimicking the viral infection. Rat pups of postnatal day (PND) 7 were infused with a single dose of poly (I:C) (5 mg/kg BW) and vehicle alone to controls. When these pups grew to 3, 6 and 12 weeks, their spatial and fear conditioning memory were impaired as assessed by Morris water maze and passive avoidance test, respectively. We checked the immune activation by staining of TNF-α in the hippocampus and observed that poly (I:C) exposure elevated the number of TNF-α positive cells immediately after 12 h of infusion in one week rat and it persisted up to postnatal age of 3 and 12 weeks. Moreover, poly (I:C) significantly decreased the binding of 3H-QNB to the cholinergic receptors in the frontal cortex and hippocampus of 3 and 6 weeks rats as compared to control but did not change significantly in 12 weeks rats. RT-PCR and immunoblotting results showed that poly (I:C) exposure upregulated the expression of memory associated genes (BDNF, Arc, EGR1) at mRNA and protein level in frontal cortex and hippocampus of 3 weeks rats as compared to control. However, long-time persistence of poly (I:C) effects significantly decreased the expression of these genes in both brain regions of 12 weeks rats. Taken together, it is evident that early life exposure to poly (I:C) has a long-term effect and impairs learning and memory, probably through TNF-α mediated neuroinflammation and alteration in the expression of memory associated genes in frontal cortex and hippocampus of rats.
Collapse
Affiliation(s)
| | - Brijendra Singh
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Yogesh Kumar Dhuriya
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Rajendra Kumar Shukla
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Vinay Kumar Khanna
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | | |
Collapse
|