1
|
Islam MT, Akbor MS, Bhuia MS, Hasan R, Chowdhury R, Islam MA, Saifuzzaman M. GABAergic antidepressant effect of daidzin: in vivo approach with in silico receptor binding affinities. In Silico Pharmacol 2025; 13:57. [PMID: 40248027 PMCID: PMC11999917 DOI: 10.1007/s40203-025-00357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Daidzin (DZN: 7-(β-D-Glucopyranosyloxy)-4-hydroxyisoflavone) is a soy plant-derived isoflavone. It has diverse biological activities, including nephroprotective effects. To date, its anxiolytic, memory-enhancing, and antiepileptic properties have been discovered. However, its antidepressant activity has not yet been investigated.This study aimed to investigate DZN's antidepressant activity through animal and in silico studies. Male Swiss albino mice were randomly divided into nine groups consisting of control (vehicle), DZN 5, 10, and 20mg/kg, diazepam (GABAA agonist), flumazenil (GABAA antagonist), and a combination of DZN-10 with diazepam and/or flumazenil. Additionally, in silico studies were also performed to understand the possible molecular mechanisms behind this neurological activity. Findings suggest that DZN dose-dependently and significantly (p < 0.05) enhanced immobility time (IMT) in animals. DZN-10 also increased diazepam's effects significantly (p < 0.05), possibly by raising its IMT values. However, DZN significantly (p < 0.05) declined flumazenil's effect in their combination. In silico findings suggest that DZN has a strong binding affinity against GABAA receptor subtypes. We suppose DZN exerts its antidepressant effect, possibly by interacting with GABAA receptors. It exerts a synergistic effect with the GABA agonist drug diazepam. Further studies are required to determine the exact molecular mechanism behind this neurological activity.
Collapse
Affiliation(s)
- Md. Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Showkot Akbor
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100 Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center, Gopalganj, 8100 Bangladesh
| | - Md. Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212 Bangladesh
| | - Md. Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna, 9208 Bangladesh
| |
Collapse
|
2
|
Islam MT, Al Hasan MS, Ferdous J, Ahammed S, Bhuia MS, Sheikh S, Yana NT, Ansari IA, Ansari SA, Saifuzzaman M. Daidzin Enhances the Anticonvulsion Effects of Carbamazepine and Diazepam, Possibly Through Voltage-Gated Sodium Channels and GABA A-Dependent Pathways. Mol Neurobiol 2025:10.1007/s12035-025-04916-3. [PMID: 40232646 DOI: 10.1007/s12035-025-04916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, affecting approximately 50 million people globally. Daidzin (DZN), a naturally occurring isoflavone, has shown various pharmacological effects, including neuroprotective activities in animals. This study investigated the anticonvulsant effects of DZN with possible mechanisms of action using behavioral studies using experimental animals and in silico approaches. For this, a pentylenetetrazole (PTZ, 80 mg/kg, i.p.)-induced seizure model was applied in young broiler chicks. Treatment groups included DZN (5, 10, 20 mg/kg, p.o.), carbamazepine (CAR: 80 mg/kg, p.o.), and diazepam (DZP: 5 mg/kg, p.o.) alone and in combinations. After PTZ administration, convulsion onset, frequency, duration, and mortality rates were recorded. We also performed an in vitro study to check GABAergic activity of DZN and DZP. Additionally, molecular docking studies were performed against the GABAA receptor and voltage-gated sodium channel, along with pharmacokinetics and toxicity assessments of the test compound and the reference drugs. Results showed that DZN dose-dependently increased convulsion onset and significantly reduced convulsion frequency and duration compared to the control group (p < 0.05). The combination of DZN- 20 with CAR- 80 and DZP- 5 significantly enhanced convulsion onset and protection rates while reducing convulsion frequency and durations compared to their individual treatment groups. Both DZP and DZN also showed a concentration-dependent GABA activity inhibition capacity. DZN showed the highest binding affinities with GABAA receptor (- 7.8 kcal/mol) and voltage-gated sodium channel (- 9.1 kcal/mol) than the standard drugs. It also supported acceptable pharmacokinetic and toxicity profiles in in silico studies. Taken together, DZN exerted and enhanced the anticonvulsant effects of CAR and DZP, possibly through GABAA receptor and voltage-gated sodium channel interaction pathways.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh.
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh.
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
- Department of Biotechnology and Genetic Engineering, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, 1349, Bangladesh
| | - Shoyaeb Ahammed
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, 8100, Bangladesh
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124, Turin, Italy
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
3
|
Patil P, Kumar P. Exploring kudzu: Extraction, quantification, and health impacts of bioactive compounds. Fitoterapia 2025; 182:106453. [PMID: 40020789 DOI: 10.1016/j.fitote.2025.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Kudzu (Pueraria species) is a perennial plant within the Fabaceae family, native to China, Japan, and India. It is known for its therapeutic properties, mainly due to its high content of isoflavones, including puerarin, daidzein, daidzin, genistein, and genistin. These isoflavones are found throughout the plant and are important in developing pharmaceutical drugs. This review comprehensively analyzes naturally occurring isoflavones in Kudzu, focusing on advanced and green techniques for their extraction, purification, and identification. Additionally, it highlights their health benefits and the growing demand in the global food and pharmaceutical industries. Due to their superior efficiency, scalability, and cost-effectiveness, contemporary eco-friendly extraction methods like ultrasound, microwave, enzyme-assisted, and supercritical fluid extraction are gaining prominence in this endeavor. They are crucial in optimizing the extraction process, driving innovation within industries, and harnessing natural sources, ultimately boosting global economies. Scientific studies confirm that Kudzu isoflavones have various anti-diabetic, neuroprotective, anti-cancer, antioxidant, alcohol detoxification, and cardiovascular protective effects. This review encourages further exploration of Kudzu isoflavones as a nutritional food source. It also highlights advancements in extraction methods within pharmaceuticals and natural products, underscoring the superiority of modern techniques over conventional ones. Additionally, critical analysis of the trends, limitations, and scope of Kudzu-extracted isoflavones for novel food applications can further advance scientific understanding.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India.
| |
Collapse
|
4
|
Ji D, Mylvaganam S, Ravi Chander P, Tarnopolsky M, Murphy K, Carlen P. Mitochondria and oxidative stress in epilepsy: advances in antioxidant therapy. Front Pharmacol 2025; 15:1505867. [PMID: 40177125 PMCID: PMC11961640 DOI: 10.3389/fphar.2024.1505867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/26/2024] [Indexed: 04/05/2025] Open
Abstract
Epilepsy, affecting approximately 50 million individuals worldwide, is a neurological disorder characterized by recurrent seizures. Mitochondrial dysfunction and oxidative stress are critical factors in its pathophysiology, leading to neuronal hyperexcitability and cell death. Because of the multiple mitochondrial pathways that can be involved in epilepsy and mitochondrial dysfunction, it is optimal to treat epilepsy with multiple antioxidants in combination. Recent advancements highlight the potential of antioxidant therapy as a novel treatment strategy. This approach involves tailoring antioxidant interventions-such as melatonin, idebenone, and plant-derived compounds-based on individual mitochondrial health, including mitochondrial DNA mutations and haplogroups that influence oxidative stress susceptibility and treatment response. By combining antioxidants that target multiple pathways, reducing oxidative stress, modulating neurotransmitter systems, and attenuating neuroinflammation, synergistic effects can be achieved, enhancing therapeutic efficacy beyond that of a single antioxidant on its own. Future directions include conducting clinical trials to evaluate these combination therapies, and to translate preclinical successes into effective clinical interventions. Targeting oxidative stress and mitochondrial dysfunction through combination antioxidant therapy represents a promising adjunctive strategy to modify disease progression and improve outcomes for individuals living with epilepsy.
Collapse
Affiliation(s)
- Delphine Ji
- Krembil Research Institute, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Mark Tarnopolsky
- Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | | | - Peter Carlen
- Krembil Research Institute, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
- Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Alzarea SI, Afzal M, Moglad E, Alhassan HH, Alzarea AI, Alsaidan OA, Sayyed N, Kazmi I. In silico and in vivo evaluation of erucic acid against pentylenetetrazole-induced seizures in mice by modulating oxidative stress, neurotransmitters and neuroinflammation markers. Nutr Neurosci 2025:1-16. [PMID: 40022513 DOI: 10.1080/1028415x.2025.2463677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
BACKGROUND Pentylenetetrazole (PTZ) is a commonly used chemical to induce epileptic seizures in experimental animals. AIM To investigate the neuroprotective effects of erucic acid against PTZ-induced seizures in mice and explore its underlying mechanisms. METHODOLOGY The mice were randomly allocated into four groups: normal control, PTZ-treated (35 mg/kg via intraperitoneal injection), and PTZ + erucic acid (at doses of 10 and 20 mg/kg). Various parameters were assessed, including the percentage of animals experiencing convulsions, latency to death, percentage of deaths, levels of neurotransmitters, pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), oxidative stress marker malondialdehyde (MDA), antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and caspase-3. The docking analysis was performed using AutoDock Vina software. RESULTS Erucic acid markedly reduced the severity and frequency of PTZ-induced seizures, significantly decreased mortality rates, and restored altered neurotransmitter levels in mice. It alleviated oxidative stress by increasing the activity of antioxidant enzymes and reducing malondialdehyde (MDA) levels. Additionally, erucic acid mitigated neuroinflammation by downregulating pro-inflammatory cytokine production and inhibiting NF-κB activation. Molecular docking studies demonstrated that erucic acid exhibited strong binding affinities toward key molecular targets, including GABA (-4.546), NF-κB (-5.982), and caspase-3 (-5.22), suggesting its potential as a neuroprotective agent. CONCLUSION Erucic acid may be an effective natural compound in PTZ-induced seizures in mice by restoring neurotransmitters, oxidative stress and neuroinflammatory mediators. It could prove to be a better alternative in the treatment of epilepsy.
Collapse
Affiliation(s)
- Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Wang P, Lu H, Zhang C, Wang R, Chen X, Qiao L, Wang Z, Wang W. Daidzin improves the cisplatin chemosensitivity for osteosarcoma via binding to β-catenin protein and suppressing the wnt pathway. Sci Rep 2025; 15:5484. [PMID: 39953179 PMCID: PMC11829052 DOI: 10.1038/s41598-025-89766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Osteosarcoma (OS) mainly occurs in adolescents and children, accompanied with chemotherapy resistance as well as unsatisfactory treatment outcome. Recent studies have discovered a series of natural products with anticancer activity, which have important translational value. Daidzin has been reported with a variety of biological activities. We aim to explore whether daidzin has therapeutic potential for OS. In this study, cell based and in vivo studies showed that daidzin can inhibit the ability of OS cells to proliferate and metastasize. Compared to single treatment arms, combined treatment of daidzin and cisplatin, a classic recommendation for OS treatment, showed a further suppression in OS cell viability, migration and invasion ability, and led to further apoptosis. Mechanistically, daidzin was found to downregulate the β-catenin expression and further inhibited the Wnt pathway. However, daidzin did not alter the transcriptional level of β-catenin. Molecular docking showed a potential interaction between daidzin and β-catenin protein, and their combination was further confirmed by thermal shift assay and MST assay. Daidzin was found to reduced protein stability of β-catenin, and only transfection of β-catenin mutant (a mutant that targets the binding sites to daidzin) at the same time as daidzin treatment could effectively attenuate the antitumor effect of daidzin. Our study suggests that daidzin has translational value as a potential adjuvant to improve treatment outcomes for OS.
Collapse
Affiliation(s)
- Peng Wang
- Department of orthopedics, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China
| | - Hao Lu
- Department of orthopedics, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China
| | - Chi Zhang
- Department of Joint surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renwei Wang
- Department of orthopedics, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China
| | - Xiaobo Chen
- Department of Stomatology, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China
| | - Lixin Qiao
- Department of orthopedics, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China
| | - Zhiyong Wang
- Department of Joint surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wenge Wang
- Department of orthopedics, Linfen central hospital, Jiefang West Road No.17, Yaodu District, Linfen, 041000, Shanxi, China.
| |
Collapse
|
7
|
Mirzababaei M, Babaei F, Ghafghazi S, Rahimi Z, Asadi S, Dargahi L, Nassiri-Asl M, Haghnazari L. Saccharomyces Boulardii alleviates neuroinflammation and oxidative stress in PTZ-kindled seizure rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1625-1635. [PMID: 39141021 DOI: 10.1007/s00210-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Previous research have reported that modulating the gut microbiome composition by fecal microbiota transplantation and probiotic administration can alleviate seizure occurrence and severity. Saccharomyces boulardii (SB) is a yeast probiotic that has demonstrated ameliorating effects on anxiety, memory and cognitive deficit, and brain amyloidogenesis. In this research, our goal was to examine the anti-seizure effects of SB on the pentylenetetrazole (PTZ)-kindled male Wistar rats. The animals were randomly categorized into four test groups. The rats were orally administered with saline (control and PTZ groups) or S. boulardii (SB + PTZ and SB groups) for 57 days. From the 29th day of the experiment, the animals received intraperitoneally saline (control and SB groups) or PTZ (PTZ and SB + PTZ groups) on alternate days for 30 days. The administration dose of SB and PTZ was 1010 CFU/ml/day and 35 mg/kg, respectively. We assessed animal seizure behavior, neuroinflammation, oxidative stress, and the levels of matrix metalloproteinase-9 (MMP-9) and brain-derived neurotrophic factor (BDNF) in the hippocampus tissue. S. boulardii hindered the PTZ-induced kindling development. SB treatment elevated glutathione (GSH) and total antioxidant capacity (TAC) and reduced malondialdehyde (MDA) levels. SB also lessened the hippocampal levels of BDNF and MMP-9. Following SB supplementation, proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-6 were lowered, and anti-inflammatory cytokine IL-10 was enhanced. Overall, our data indicated, for the first time, the positive impact of SB on the PTZ-kindled seizure rat model. The anti-seizure activity of SB was mediated by modulating oxidative stress, neuroinflammation, and MMP-9 and BDNF levels.
Collapse
Affiliation(s)
- Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Asadi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R., Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lida Haghnazari
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Singh L. Daidzein's potential in halting neurodegeneration: unveiling mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:243-259. [PMID: 39158734 DOI: 10.1007/s00210-024-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Neurological conditions encompassing a wide range of disorders pose significant challenges globally. The complex interactions among signaling pathways and molecular elements play pivotal roles in the initiation and progression of neurodegenerative diseases. Isoflavones have emerged as a promising candidate to fight against neurodegenerative diseases. Daidzein, a 7-hydroxy-3-(4-hydroxyphenyl)-chromen-4-one, belongs to the isoflavone class and exhibits a diverse pharmacological profile. It is found primarily in soybeans and soy products, as well as in some other legumes and herbs. Investigations into daidzein have revealed that it confers neuroprotection by inhibiting oxidative stress, inflammation, and apoptosis, which are key contributors to neuronal damage and degeneration. Activating pathways like PI3K/Akt/mTOR and promoting neurotrophic factors like BDNF by daidzein underscore its potential in supporting neuronal function and combating neurodegeneration. Daidzein's effects on dopamine provide further avenues for intervention in conditions like Parkinson's disease. Additionally, the modulation of inflammatory and NRF-2-antioxidant signaling by daidzein reinforces its neuroprotective role. Moreover, daidzein's interaction with receptors and cellular processes like ER-β, GPR30, MAO, VEGF, and GnRH highlights its multifaceted effects across multiple pathways involved in neuroprotection and neuronal function. This review article delves into the mechanistic interplay of various mediators in mediating the neuroprotective effects of daidzein. The review article consolidates and analyzes research published over nearly two decades (2005-2024) from various databases, including PubMed, Scopus, ScienceDirect, and Web of Science, to provide a comprehensive understanding of daidzein's effects and mechanisms in neuroprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
9
|
Yang J, Cai JH, Wu TX, Gao ZQ, Zhou C, Wu Q, Ji MJ. Salvinorin A ameliorates pilocarpine-induced seizures by regulating hippocampal microglia polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118697. [PMID: 39154669 DOI: 10.1016/j.jep.2024.118697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia divinorum (Epling and Játiva) is a psychoactive plant traditionally used by the Latinos for various medicinal purposes. Salvinorin A (Sal A), the main bioactive constituent of S. divinorum, is a natural highly selective kappa opioid receptor (KOR) agonist. Considering the anti-inflammatory effect of S. divinorum and endogenous hippocampal dynorphin/kappa opioid receptor (KOR) system playing an anticonvulsant function, we hypothesis that Sal A can be a potential candidate to treat epilepsy. Here, we identified whether Sal A ameliorated epileptic seizures and neuronal damages in animal model and in vitro model and investigated its underlying mechanisms. MATERIALS AND METHODS Mice epilepsy model was induced by pilocarpine following seizures assessed by Racine classification. Hippocampus tissues were obtained for genetic, protein, and histological investigation. Furthermore, lipopolysaccharide (LPS)-activated BV2 microglial cells were utilized to validate the anti-inflammatory and microglia polarization regulation effects of Sal A. RESULTS Sal A treatment significantly prolonged the latency to status epileptics (SE) and shortened the duration of SE in the pilocarpine-induced model. It also alleviated neuronal damages via activation of the AMPK/JNK/p-38 MAPK pathway and inhibition of apoptosis-related protein in hippocampus tissues. Furthermore, Sal A dose-dependently reduced microglia-mediated expression of pro-inflammatory cytokines and increased anti-inflammatory factors levels in SE mice and LPS-activated BV2 microglial cells by regulating microglia polarization. In addition, the effect of Sal A in vitro was totally blocked by KOR antagonist nor-BNI. CONCLUSION Sal A treatment protects against epileptic seizures and neuronal damages in pilocarpine-induced models by suppressing the inflammation response through regulating microglial M1/M2 polarization. This study might serve as a theoretical basis for clinical applications of Sal A and its analogs and provide a new insight into the development of anti-seizure drugs.
Collapse
Affiliation(s)
- Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Ji-Heng Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China; Department of Anesthesiology, Sheyang County People's Hospital, Yancheng, 224300, China.
| | - Tong-Xuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhi-Qiang Gao
- School of Pharmacology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chao Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
10
|
Ali SO, Ghaiad HR, Elmasry GF, Mehana NA. Sinapic Acid Mitigates Pentylenetetrazol-induced Acute Seizures By Modulating the NLRP3 Inflammasome and Regulating Calcium/calcineurin Signaling: In Vivo and In Silico Approaches. Inflammation 2024; 47:1969-1986. [PMID: 38662166 PMCID: PMC11607019 DOI: 10.1007/s10753-024-02019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Sinapic acid (SA) is a naturally occurring carboxylic acid found in citrus fruits and cereals. Recent studies have shown that SA has potential anti-seizure properties due to its anti-inflammatory, antioxidant, and anti-apoptotic effects. The present study investigated the neuroprotective role of SA at two different dosages in a pentylenetetrazol (PTZ)-induced acute seizure model. Mice were divided into six groups: normal control, PTZ, SA (20 mg/kg), SA (20 mg/kg) + PTZ, SA (40 mg/kg), and SA (40 mg/kg) + PTZ. SA was orally administered for 21 days, followed by a convulsive dose of intraperitoneal PTZ (50 mg/kg). Seizures were estimated via the Racine scale, and animals were behaviorally tested using the Y-maze. Brain tissues were used to assess the levels of GABA, glutamate, oxidative stress markers, calcium, calcineurin, (Nod)-like receptor protein-3 (NLRP3), interleukin (IL)-1β, apoptosis-associated speck-like protein (ASC), Bcl-2-associated death protein (Bad) and Bcl-2. Molecular docking of SA using a multistep in silico protocol was also performed. The results showed that SA alleviated oxidative stress, restored the GABA/glutamate balance and calcium/calcineurin signaling, downregulated NLRP3 and apoptosis, and improved recognition and ambulatory activity in PTZ-treated mice. In silico results also revealed that SA strongly interacts with the target proteins NLRP3 and ASC. Overall, the results suggest that SA is a promising antiseizure agent and that both doses of SA are comparable, with 40 mg/kg SA being superior in normalizing glutathione, calcium and IL-1β, in addition to calcineurin, NLRP3, ASC and Bad.
Collapse
Affiliation(s)
- Shimaa O Ali
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Noha A Mehana
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
11
|
Polat GP, Gumral N, Aslankoc R, Ozmen O, Çelik Ö, Kavrik O, Saygın M. Vetiveria zizanioides modulates experimental epilepsy-induced seizures, oxidative stress, and apoptosis in the brain of rats. Metab Brain Dis 2024; 40:36. [PMID: 39576294 DOI: 10.1007/s11011-024-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
In this study, we investigated the protective actions of Vetiveria zizanioides oil (VET) against oxidative stress and apoptosis in a rat model of pentylenetetrazol (PTZ)-induced epilepsy model. Rats were divided into four groups: control (1 ml/kg saline, by gavage, 7 days + 1 ml/kg saline, i.p, single dose, 8th day), PTZ (1 ml/kg saline, by gavage, 7 days + 60 mg/kg, i.p, single dose, 8th day), PTZ + VET-200 (200 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ, i.p, single dose, 8th day), and PTZ + VET-400 (400 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ i.p, single dose, 8th day). Behavioral evaluation (Racine scale was used to classify the severity of seizures according to stages) and EEG recordings were taken. At the end of the experiment, the animals were sacrificed, and blood, hippocampus, and cerebral cortex tissues were removed for biochemical and histopathological examinations. PTZ injection increased the duration of the first epileptic spike and the total number of seizures and caused oxidative stress by increasing the total oxidant status (TOS). The treatment of PTZ induced neurodegenerative changes in the tissues such as increases of apoptosis, Bcl-2, Cyclin B1, and GABA expressions, but decreased Beta-tubulin. However, all the adverse changes of PTZ were modulated by the treatment of VET-200 and VET-400. In conclusion, these results showed that VET could ameliorate epileptic seiures, oxidative stress, and neuronal apoptosis in PTZ-induced seizures.
Collapse
Affiliation(s)
- Gurbet Pınar Polat
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ömer Çelik
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Mustafa Saygın
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
12
|
Haider T, Khan S, Bibi T, Zahra SA, Ali H, Din FU, Shah FA, Youn I, Seo EK. Daidzein ameliorates experimental traumatic brain injury-induced neurological symptoms by suppressing oxidative stress and apoptosis. J Biochem Mol Toxicol 2024; 38:e70019. [PMID: 39425453 DOI: 10.1002/jbt.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Traumatic brain injury (TBI) causes deficits in neurological function, induces pathological changes, and increases oxidative stress. The current investigation aimed to determine Daidzein's neuroprotective potential in experimental TBI. Initially, the HT-22 cell line exposed to H2O2 underwent in vitro examination, and the results showed that Daidzein had a neuroprotective effect evident from enhanced cell viability and decreased NO generation. Using three different Daidzein doses-1 mg/kg, 5 mg/kg, and 10 mg/kg-in the in vivo experiment, the potential of Daidzein was evaluated against TBI. The neurological severity score (NSS), kondziela's screen test, and elevated plus maze showed improvements after treatment with Daidzein manifested by decreased score, enhanced motor coordination, and anti-anxiety effects. Additionally, Daidzein improved mechanical allodynia and restored the breakdown of the blood-brain barrier. The FTIR spectral analysis showed restoration of the biochemical compositional changes. Furthermore, H & E and Toluidine blue staining revealed an improvement in the histopathological alterations. The RT-qPCR revealed an increase in mRNA expression level of Nrf2, HO-1, and Bcl-2 and the downregulation of Keap-1, Bax and Cleaved caspase-3 expressions. Thus, exhibiting its antioxidant and antiapoptotic potential. The RT-qPCR also manifested a decrease in mRNA expression of GFAP and Iba-1. Further immunohistochemistry results indicated Daidzein's antioxidant and antiapoptotic properties by upregulating Nrf2 and downregulating cleaved caspase-3. Daidzein also lowered the apoptosis index and improved neuronal survival evidenced by flow cytometric analysis. In addition to this, Daidzein notably increased the antioxidant enzyme levels and decreased the oxidative stress markers. The current study's findings point to the neuroprotective potential of the phytoestrogen Daidzein as it lessened neurological abnormalities, decreased oxidative stress, and lowered proapoptotic protein expression.
Collapse
Affiliation(s)
- Tehreem Haider
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sana Ali Zahra
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Isoo Youn
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
13
|
Althagafi HA. Neuroprotective role of chlorogenic acid against hippocampal neuroinflammation, oxidative stress, and apoptosis following acute seizures induced by pentylenetetrazole. Metab Brain Dis 2024; 39:1307-1321. [PMID: 39133453 DOI: 10.1007/s11011-024-01400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
This study investigated the neuroprotective effect of chlorogenic acid (CGA) on pentylenetetrazole (PTZ)-induced acute epileptic seizures in mice. Epileptic animals received CGA (200 mg/kg) or sodium valproate (standard antiepileptic agent, 200 mg/kg) for four weeks. Results revealed that pre-administration of CGA significantly reversed the behavioral changes following pentylenetetrazole (PTZ) injection. Further, CGA pre-treatment caused significant increases in acetylcholinesterase (AChE) activity and brain-derived neurotrophic factor (BDNF) levels, along with marked increases in dopamine, norepinephrine, and serotonin levels. Additionally, the increased antioxidant enzymes activities, along with higher glutathione (GSH) contents and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression, were indicative of a notable improvement in the cellular antioxidant defense in mice treated with CGA. These results were associated with lowered malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, epileptic mice that received CGA showed significant declines in the content of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and nuclear factor kappa-B (NF-κB), besides downregulating inducible nitric oxide synthase (iNOS) expression. Remarkably, CGA counteracted hippocampal apoptosis by lessening the levels of pro-apoptotic biomarkers [Bcl-2-associated X protein (Bax) and caspase-3] and increasing the anti-apoptogenic marker level of B-cell lymphoma 2 (Bcl-2). The hippocampal histopathological findings corroborated the abovementioned changes. In sum, these findings suggest that CGA could mediate the neuroprotective effect against PTZ-induced epilepsy via modulation of neurotransmitters, oxidative damage, neuroinflammation, and apoptosis. CGA, therefore, could be considered a valuable antiepileptic therapeutic supplement.
Collapse
Affiliation(s)
- Hussam A Althagafi
- Department of Biology, Faculty of Science, Al-Baha University, Al Baha, Saudi Arabia.
| |
Collapse
|
14
|
Islam MT, Bhuia MS, Sheikh S, Hasan R, Bappi MH, Chowdhury R, Ansari SA, Islam MA, Saifuzzaman M. Sedative Effects of Daidzin, Possibly Through the GABA A Receptor Interaction Pathway: In Vivo Approach with Molecular Dynamic Simulations. J Mol Neurosci 2024; 74:83. [PMID: 39230641 DOI: 10.1007/s12031-024-02261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The soy isoflavone daidzin (DZN) has been considered a hopeful bioactive compound having diverse biological activities, including anxiolytic, memory-enhancing, and antiepileptic effects, in experimental animals. However, its sedative and hypnotic effects are yet to be discovered. This study aimed to evaluate its sedative/hypnotic effect on Swiss mice. Additionally, in silico studies were also performed to see the possible molecular mechanisms behind the tested neurological effect. For this, male Swiss albino mice were treated with DZN (5, 10, or 20 mg/kg) intraperitoneally (i.p.) with or without the standard GABAergic medication diazepam (DZP) and/or flumazenil (FLU) and checked for the onset and duration of sleeping time using thiopental sodium-induced as well as DZP-induced sleeping tests. A molecular docking study was also performed to check its interaction capacity with the α1 and β2 subunits of the GABAA receptor. Findings suggest that DZN dose-dependently and significantly reduced the latency while increasing the duration of sleep in animals. In combination therapy, DZN shows synergistic effects with the DZP-2 and DZP-2 + FLU-0.01 groups, resulting in significantly (p < 0.05) reduced latency and increased sleep duration. Further, molecular docking studies demonstrate that DZN has a strong binding affinity of - 7.2 kcal/mol, which is closer to the standard ligand DZP (- 8.3 kcal/mol) against the GABAA (6X3X) receptor. Molecular dynamic simulations indicated stability and similar binding locations for DZP and DZN with 6X3X. In conclusion, DZN shows sedative effects on Swiss mice, possibly through the GABAA receptor interaction pathway.
Collapse
Affiliation(s)
- Md Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh.
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Mehedi Hasan Bappi
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, 8100, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, East West University, Dhaka, 1212, Bangladesh
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
15
|
Islam MT, Chowdhury R, Bhuia MS, Chakrabarty B, Kundu N, Akbor MS, Sheikh S, Chowdhury RI, Ansari SA, Ansari IA, Islam MA. Daidzin enhances memory and the antischizophrenia drug olanzapine's effects, possibly through the 5-HT 2A and D 2 receptor interaction pathways. Drug Dev Res 2024; 85:e22259. [PMID: 39233388 DOI: 10.1002/ddr.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Schizophrenia affects identification and disturbs our thinking and motivational capacity. Long-term use of daidzin (DZN) is evident to enhance attention and memory in experimental animals. This study aimed to investigate the effect of DZN on Swiss mice. To check animals' attention, identification, thinking, and motivational ability, we performed behavioral studies using marble burying, dust removal, and trained swimming protocols. For this, a total of 36 male Swiss albino mice were randomly divided into six groups, consisting of 6 animals in each group, as follows: control (vehicle), DZN-1.25, DZN-2.5, DZN-5 mg/kg, olanzapine (OLN)-2, and a combination of DZN-1.25 with OLN-2. Additionally, in silico studies are also performed to understand the possible molecular mechanisms behind this neurological effect. Findings suggest that DZN dose-dependently and significantly (p < .05) increased marble burying and removed dust while reducing the time to reach the target point. DZN-1.25 was found to enhance OLN's effect significantly (p < .05), possibly via agonizing its activity in animals. In silico findings suggest that DZN has strong binding affinities of -10.1 and -10.4 kcal/mol against human serotonin 2 A (5-HT2A) and dopamine 2 (D2) receptors, respectively. Additionally, DZN exhibits favorable pharmacokinetic and toxicity properties. We suppose that DZN may exert its attention- and memory-enhancing abilities by interacting with 5-HT2A and D2 receptors. It may exert a synergistic antischizophrenia-like effect with the standard drug, OLN. Further studies are required to discover the exact molecular mechanism for this neurological function in animals.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Brototi Chakrabarty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Rokibul Islam Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Bangladesh, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| |
Collapse
|
16
|
Ishii T, Kaya M, Muroi Y. Oral Administration of Probiotic Bifidobacterium breve Ameliorates Tonic-Clonic Seizure in a Pentylenetetrazole-Induced Kindling Mouse Model via Integrin-Linked Kinase Signaling. Int J Mol Sci 2024; 25:9259. [PMID: 39273208 PMCID: PMC11395544 DOI: 10.3390/ijms25179259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects over 70 million people worldwide. Although many antiepileptic drugs that block seizures are available, they have little effect on preventing and curing epilepsy, and their side effects sometimes lead to serious morbidity. Therefore, prophylactic agents with anticonvulsant properties and no adverse effects need to be identified. Recent studies on probiotic administration have reported a variety of beneficial effects on the central nervous system via the microbiota-gut-brain axis. In this study, we investigated the effects of the oral administration of Bifidobacterium breve strain A1 [MCC1274] (B. breve A1) on tonic-clonic seizure in a pentylenetetrazole (PTZ)-induced kindling mouse (KD mouse) model. We found that the oral administration of B. breve A1 every other day for 15 days significantly reduced the seizure score, which gradually increased with repetitive injections of PTZ in KD mice. The administration of B. breve A1, but not saline, to KD mice significantly increased the level of Akt Ser473 phosphorylation (p-Akt) in the hippocampus; this increase was maintained for a minimum of 24 h after PTZ administration. Treatment of B. breve A1-administered KD mice with the selective inhibitor of integrin-linked kinase (ILK) Cpd22 significantly increased the seizure score and blocked the antiepileptic effect of B. breve A1. Moreover, Cpd22 blocked the B. breve A1-induced increase in hippocampal p-Akt levels. These results suggest that the ILK-induced phosphorylation of Akt Ser473 in the hippocampus might be involved in the antiepileptic effect of B. breve A1.
Collapse
Affiliation(s)
- Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Motohiro Kaya
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
17
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
18
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Wang S, Liu L, Liang S, Yang J, Zhang Y, Liu X. Effects of BXSMD on ESR1 and ESR2 expression in CSD female mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116973. [PMID: 37517566 DOI: 10.1016/j.jep.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Due to the rapid pace of modern society, chronic insomnia has become universal phenomenon. In China, Banxia Shumi Decoction (BXSMD) has been used in treating chronic insomnia for thousands of years, but its chemical composition and action mechanism are still unknown. AIM OF THE STUDY This study aims to explore the chemical composition of BXSMD and its effects on Estrogen receptor 1 (ESR1) and Estrogen receptor 2 (ESR2) in mice with chronic sleep deprivation (CSD). MATERIALS AND METHODS UHPLC-Q-Orbitrap-MS/MS was applied in determining the chemical composition of BXSMD. After 21-day sleep deprivation (SD) in platform water environment, CSD mice model was prepared. By conducting open field test, 24-h autonomic diurnal and nocturnal activity of mice in each group was detected. ELISA was employed to measure the contents of 5-HT, DA, NE, GABA, Glu, and MT. With RT-PCR, Western blot (WB), and immunohistochemistry (IHC), mRNA and protein expressions of ESR1 and ESR2 in the hypothalamus and hippocampus were tested. RESULTS BXSMD included ferulic acid, kaverol, daidzein, apigenin, berberine, adenosine, aesculin, vanillin, naringin, and glycine, which might constitute the material basis forthe improvement of chronic insomnia. With BXSMD, the total moving distance and the rest time in dark period of CSD mice were shortened, while its rest time in light period was increased. Besides, BXSMD enhanced the contents of 5-HT, GABA, and MT in CSD mice, and decreased the contents of Glu, NE, and DA. BXSMD elevated the mRNA of Esr1 and Esr2, and elevated the protein expressions of ESR1 and ESR2 in the hypothalamus and hippocampus of CSD mice. CONCLUSIONS BXSMD contains various chemical components for sleep-wake regulation, with the mechanism of stimulating estrogen signaling pathway by regulating the expressions of ESR1 and ESR2, ultimately realizing the regulation to sleep-wake disorder caused by CSD.
Collapse
Affiliation(s)
- Shujun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Leilei Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Shuzhi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jinni Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| | - Xijian Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| |
Collapse
|
20
|
Mohammed MM, Rehim SRA, Okasha AMM, El-Mezayen H, Mohammed DGAN, Gomaa W, Mourad F, Ayad EG. Phenobarbital ameliorates hyperglycemia-induced angiogenesis in diabetic nephropathy-possible intervention at the HIF-1α/VEGF axis. UKRAINIAN BIOCHEMICAL JOURNAL 2023; 95:40-49. [DOI: 10.15407/ubj95.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Hyperglycemia contributes to a cascade of inflammatory responses in kidneys that result in the development of renal hypoxia and angiogenesis with subsequent chronic renal failure. As the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) axis is a key pathway for neovascularization, the inhibition of this axis is a target for renal angiogenesis therapy. We speculate that Phenobarbital (PB) which has a potential to reduce vascularization in clinical settings might have an influence on the development of angiogenesis in diabetic kidney. The aim of the study was to explore the effects of PB on the HIF-1α and VEGF expression and angiogenesis in renal tissue of rats with hyperglycemia and diabetic nephropathy. Sixty-four male Wistar rats were devided into 4 groups: control group received a single intraperitoneal saline injection; PB group received 0.05% PB orally in drinking water; diabetic group received a single intra-peritoneal STZ (65 mg/kg) injection; PB-STZ group received 0.05% PB orally two weeks before STZ administration. At the end of the experiment period (8 weeks), the kidneys were removed and used for biochemical analyses. Serum glucose, urea and creatinine levels, IL-6 levels in kidney homogenate and changes in HIF-1α and VEGF gene expression were estimated. Hematoxylin-eosin staining was performed for histopathological examination. The results obtained showed that both HIF-1α and VEGF gene expression and IL6 level in diabetic rat group were significantly elevated compared to that in control group, whereas in PB and PB-STZ groups, these indices were significantly down-regulated compared to the diabetic group. Abundant glomerular congestion and mesangial proliferation were detected in diabetic rat renal tissues. However, in PB-treated diabetic group, newly formed vessels were significantly decreased. These findings confirmed that phenobarbital, affecting the HIF-1α/VEGF signaling pathway, ameliorates angiogenesis after hyperglycemic kidney injury. Keywords: angiogenesis, HIF-1α, hyperglycemia, IL6, kidney injury, VEGF
Collapse
|
21
|
Che Has AT. The applications of the pilocarpine animal model of status epilepticus: 40 years of progress (1983-2023). Behav Brain Res 2023; 452:114551. [PMID: 37348654 DOI: 10.1016/j.bbr.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Status epilepticus is a neurological disorder that can result in various neuropathological conditions and presentations. Various studies involving animal models have been accomplished to understand and replicating its prominent manifestations including characteristics of related clinical cases. Up to these days, there are variety of methods and techniques to be utilized in inducing this disorder that can be chemically or electrically applied which depending on the experimental designs and targets of the studies. In particular, the chemically induced pilocarpine animal model of status epilepticus is a reliable choice which has evolved for 40 years from its initial discovery back in 1983. Although the development of the model can be considered as a remarkable breakthrough in understanding status epilepticus, several aspects of the model have been improved, throughout the years. Among the major issues in developing this model are the morbidity and mortality rates during induction process. Several modifications have been introduced in the process by different studies to tackle the related problems including application of dose fractionation, adaptation of pilocarpine to lithium-pilocarpine model and utilization of various drugs. Despite all challenges and drawbacks, this model has proven its pertinent and relevance with improvements that have been adapted since it was introduced 40 years ago. In this review, we emphasize on the evolution of this animal model from the beginning until now (1983 - 2023) and the related issues that have made this model still a popular choice in status epilepticus studies.
Collapse
Affiliation(s)
- Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
22
|
Tchekalarova J, Krushovlieva D, Ivanova P, Kortenska L. Spontaneously hypertensive rats vs. Wistar Kyoto and Wistar rats: an assessment of anxiety, motor activity, memory performance, and seizure susceptibility. Physiol Behav 2023:114268. [PMID: 37308045 DOI: 10.1016/j.physbeh.2023.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Spontaneously hypertensive rats (SHRs) are widely accepted for modeling essential hypertension and Attention deficit hyperactivity disorder (ADHD). However, data concerning central nervous system changes associated with behavioral responses of this strain and usage of Wistar Kyoto (WKY) rats as controls are confounding. The objective of the present study was to assess the impact of anxiety and motor activity on the cognitive responses of SHRs compared to Wistar and WKY rats. In addition, the role of brain-derived neurotrophic factor (BDNF) in the hippocampus on cognitive behavior and seizure susceptibility in the three strains was evaluated. In Experiment#1, SHR demonstrated impulsive responses in the novelty suppression feeding test accompanied by impaired spatial working and associative memory in the Y maze and object recognition test compared with the Wistar rat but not WKY rats. In addition, the WKY rats exhibited diminished activity compared to Wistar rats in an actimeter. In Experiment#2, the seizure susceptibility was assessed by 3-min electroencephalographic (EEG) recording after two consecutive injections of pentylenetetrazol (PTZ) (20+40 mg/kg). The WKY rats were more vulnerable to rhythmic metrazol activity (RMA) than the Wistar rats. In contrast, Wistar rats were more prone to generalized tonic-clonic seizures (GTCS) than WKY rats and SHRs. Control SHR had lower BDNF expression in the hippocampus compared to Wistar rats. However, while the BDNF levels were elevated in the Wistar and WKY rats after PTZ injection, no change in this signaling molecule was observed in the SHR in the seizure condition. The results suggest Wistar rats as a more appropriate control of SHR than WKY rats for studying memory responses mediated by BDNF in the hippocampus. The higher vulnerability to seizures in Wistar and WKY rats compared to SHR might be linked to PTZ-induced decreased expression of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | | | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
23
|
Mohamed AM, Ali DA, Kolieb E, Abdelaziz EZ. Ceftriaxone and selenium mitigate seizures and neuronal injury in pentylenetetrazole-kindled rats: Oxidative stress and inflammatory pathway. Int Immunopharmacol 2023; 120:110304. [PMID: 37224649 DOI: 10.1016/j.intimp.2023.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Epilepsy is one of the most serious worldwide neurological disorders that lead to the cognitive-psychosocial insults in recurrent seizures. About one third of the patients are drug-resistant, so innovative drugs are needed to manage seizures to improve the quality of life. Ceftriaxone is a cephalosporin antibiotic that increases the expression of glutamate transporters-1 and improves the neurobehavioral effects caused by increased glutamate level in the CNS. Selenium is well known antioxidant. The present study aimed to investigate ceftriaxone and selenium therapeutic effects against epilepsy in rats. Epilepsy was induced by PTZ given at a dose (50 mg/kg I.P) on alternative days for 13 days. Eighty rats were randomly divided into 8 groups: Group1-2; normal and vehicle control, Group 3; PTZ group, Group 4-8; kindled rats received selenium, ceftriaxone100, ceftriaxone200, selenium + ceftriaxone100 and selenium + ceftriaxone200 mg/kg/day respectively for a week. At the end of the study, behavioral tests were performed. Oxidative stress, inflammatory markers, neurotransmitters and GLT-1 were measured in brain tissue homogenate. Brain histopathological investigation was also done. PTZ-kindled rats exhibited increased Racine score, besides behavioral tests and histopathological changes, significant elevation in oxidative stress and inflammatory markers, with decrease in serotonin, dopamine, GABA levels and GLT-1 expressions. Selenium and Ceftriaxone alone or combined treatment decreased Racine score with remarkable improvement in behavioral and histopathological changes. The antioxidant enzymes, neurotransmitters and GLT-1 expressions were increased, along with reduced TNF-α, IL-1 levels. Current study showed that selenium + ceftriaxone100 group represents a possible approach to improve epilepsy particularly through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Asmaa M Mohamed
- Department of Pharmacology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Dina A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Eman Kolieb
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Z Abdelaziz
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Tao W, Yao G, Yue Q, Xu C, Hu Y, Cheng X, Zhao T, Qi M, Chen G, Zhao M, Yu Y. 14-3-3ζ Plays a key role in the modulation of neuroplasticity underlying the antidepressant-like effects of Zhi-Zi-Chi-Tang. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154888. [PMID: 37257329 DOI: 10.1016/j.phymed.2023.154888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3β (GSK-3β), p-GSK-3β (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3β (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3β (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3β Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3β/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3β/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - XiaoLan Cheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, and Research Center for Formula and Patterns, Jinan University, Guangzhou, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Yu
- Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China.
| |
Collapse
|
25
|
Khan A, Shal B, Ullah Khan A, Ullah Shah K, Saniya Zahra S, ul Haq I, ud Din F, Ali H, Khan S. Neuroprotective mechanism of Ajugarin-I against Vincristine-Induced neuropathic pain via regulation of Nrf2/NF-κB and Bcl2 signalling. Int Immunopharmacol 2023; 118:110046. [PMID: 36989890 DOI: 10.1016/j.intimp.2023.110046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vincristine (VCR) is a well-known chemotherapeutic agent that frequently triggers neuropathic pain. Ajugarin-I (Aju-I) isolated from Ajuga bracteosa exerts antioxidant, anti-inflammatory, and neuroprotective properties. The present study was designed to investigate the ameliorative potential of Aju-I against VCR-induced neuropathic pain and explored the underlying mechanism involved. The neuroprotective potential of Aju-I was first confirmed against hydrogen peroxide (H2O2)-induced cytotoxicity and oxidative stress in PC12 cells. For neuropathic pain induction, vincristine was given intraperitoneally (i.p.) into adult male albino mice (BALB/c) of the same age (8-12 weeks old) for 10 days (days 1-10). Aju-I (1 and 5 mg/kg) doses were administered from day 11 to 21 intraperitoneally (i.p.) after the neuropathic induction. Initially, behavioral tests such as thermal hyperalgesia, mechanical allodynia, and cold allodynia were performed to investigate the antinociceptive potential of Ajugarin-I (1 and 5 mg/kg, b.w). The nuclear factor-erythroid factor 2-related factor 2(Nrf2), nuclear factor-κB (NF-κB), BCL2-associated × protein (Bax), and B-cell-lymphoma-2 (Bcl-2) signaling proteins were determined by immunohistochemistry and western blot. Additionally, inflammatory cytokines, antioxidant, and oxidative stress parameters were also measured in the spinal cord and sciatic nerve. The behavioral results demonstrated that Aju-I (5 mg/kg) markedly alleviated VCR-induced neuropathic pain behaviors including hyperalgesia and allodynia. It reversed the histological alterations caused by VCR in the sciatic nerve, spinal cord, and brain. It significantly alleviated oxidative stress and inflammation by regulating the immunoreactivity of Nrf2/NF-κB signaling. It suppressed apoptosis by regulating the immunoreactivity of Bcl-2/Bax and Caspase-3. The flow cytometry and comet analysis also confirmed its anti-apoptotic potential. It considerably improved the antioxidant status and mitigated VCR-induced inflammatory cytokines. High-performance liquid chromatography (HPLC) analysis indicated that Aju-I crosses the blood-brain barrier (BBB) and penetrated the brain tissue. These findings suggest that Aju-I treatment inhibited vincristine-induced neuropathy via regulation of Nrf2/NF-κB and Bcl2 signaling.
Collapse
|
26
|
Khan A, Shal B, Khan AU, Baig MW, Haq IU, Khan S. Withametelin, a steroidal lactone, isolated from datura innoxa attenuates STZ-induced diabetic neuropathic pain in rats through inhibition of NF-kB/MAPK signaling. Food Chem Toxicol 2023; 175:113742. [PMID: 36958385 DOI: 10.1016/j.fct.2023.113742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Diabetic neuropathic pain is one of the microvascular complications of diabetes mellitus characterized by symmetrical pain and sensory abnormalities. A steroidal lactone isolated from the datura innoxa plant, withametelin (WMT), exhibited significant neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. The current study aimed to investigate anti-neuropathic pain activity and the molecular mechanism of WMT against streptozotocin (STZ)-induced diabetic neuropathy. Rats were given a single injection of STZ (60 mg/kg, intraperitoneally (i.p.)) for induction of diabetes on the first day of the study. After the onset of diabetic neuropathy, pregabalin (10 mg/kg, i.p.) and WMT (0.1 and 1 mg/kg, i.p.) treatments were started from day 14 up to day 42. It was found that STZ-induced neuropathic pain behaviors were markedly reduced by WMT. It inhibited the STZ-associated histopathological changes and genotoxicity in the sciatic nerve and spinal cord. Additionally, Fourier transforms infrared (FTIR) spectroscopy results revealed that STZ-induced alterations in the biochemical components of the sciatic nerve's myelin sheath were inhibited by WMT. In the spinal cord, it markedly reduced the immunoreactivity of mitogen-activated protein kinases (MAPKs) signaling components such as p38-MAPK, c-Jun N-terminal kinase (JNK), extracellular-signal-regulated-kinase (ERK), and activator-protein 1 (AP-1). It also reduced the expression levels of nuclear factor-kappa-B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The production of inflammatory cytokines was considerably reduced by WMT. This study provides convincing evidence that WMT treatment attenuated STZ-induced diabetic neuropathic pain by inhibition of MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; DHQ Teaching Hospital Timergara, Lower Dir, KPK, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
27
|
Khan A, Shal B, Khan AU, Bibi T, Zeeshan S, Zahra SS, Crews P, Haq IU, Din FU, Ali H, Khan S. Suppression of MAPK/NF-kB and activation of Nrf2 signaling by Ajugarin-I in EAE model of multiple sclerosis. Phytother Res 2023. [PMID: 36789832 DOI: 10.1002/ptr.7751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023]
Abstract
Multiple sclerosis (MS) is a debilitating neurodegenerative autoimmune disease of the central nervous system (CNS). The current study aimed to investigate the neuroprotective properties of Ajugarin-I (Aju-I) against the experimental autoimmune encephalomyelitis (EAE) model of MS and explored the underlying mechanism involved. The protective potential of Aju-I was first confirmed against glutamate-induced HT22 cells and hydrogen peroxide (H2 O2 )-induced BV2 cells. Next, an EAE model has been established to investigate the mechanisms of MS and identify potential candidates for MS treatment. The behavioral results demonstrated that Aju-I post-immunization treatment markedly reduced the EAE-associated clinical score, motor impairment, and neuropathic pain. Evans blue and fluorescein isothiocyanate extravasation in the brain were markedly reduced by Aju-I. It effectively restored the EAE-associated histopathological changes in the brain and spinal cord. It markedly attenuated EAE-induced inflammation in the CNS by reducing the expression levels of p-38/JNK/NF-κB but increased the expression of IkB-α. It suppressed oxidative stress by increasing the expression of Nrf2 but decreasing the expression of keap-1. It suppressed EAE-induced apoptosis in the CNS by regulating Bax/Bcl-2 and Caspase-3 expression. Taken together, this study suggests that Aju-I treatment exhibits neuroprotective properties in the EAE model of MS via regulation of MAPK/NF-κB, Nrf2/Keap-1, and Bcl2/Bax signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,DHQ Teaching Hospital Timergara, Lower Dir, Timergara, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sara Zeeshan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Saniya Zahra
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Phillip Crews
- Division of Physical Sciences, Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
28
|
El-Sayed RM, Fawzy MN, Zaki HF, Abd El-Haleim EA. Neuroprotection impact of biochanin A against pentylenetetrazol-kindled mice: Targeting NLRP3 inflammasome/TXNIP pathway and autophagy modulation. Int Immunopharmacol 2023; 115:109711. [PMID: 36640710 DOI: 10.1016/j.intimp.2023.109711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Recurrent seizures characterize epilepsy, a complicated and multifaceted neurological disease. Several neurological alterations, such as cell death and the growth of gorse fibers, have been linked to epilepsy. The dentate gyrus of the hippocampus is particularly vulnerable to neuronal loss and abnormal neuroplastic changes in the pentylenetetrazol (PTZ) kindling model. Biochanin A has potent anti-inflammatory and antioxidant properties, according to previous evidence and its possible impact in epilepsy has never previously been claimed. The current work aimed to investigate biochanin A's anti-epileptic potential in PTZ-induced kindling model in mice. Chronic epilepsy was established in mice by giving PTZ (35 mg/kg, i.p) every other day for 21 days. Biochanin A (20 mg/kg) was given daily till the end of the experiment. Biochanin A pretreatment significantly reduced the severity of epileptogenesis by 51.7% and downregulated the histological changes in the CA3 region of the hippocampus by 42% along with displaying antioxidant/anti-inflammatory efficacy through upregulated hemeoxygenase-1 (HO-1) and, erythroid 2-related factor 2 (Nrf2) levels in the brain by 1.9-fold and 2-fold respectively, parallel to reduction of malondialdehyde (MDA), myeloperoxidase (MPO), glial fibrillary acidic protein (GFAP) and L-glutamate/IL-1β/TXNIB/NLRP3 axis. Moreover, biochanin A suppressed neuronal damage by reducing the astrocytes' activation and significantly attenuated the PTZ-induced increase in LC3 levels by 55.5%. Furthermore, molecular docking findings revealed that BIOCHANIN A has a higher affinity for phosphoinositide 3-kinase (PI3k), threonine kinase2 (AKT2), and mammalian target of rapamycin complex 1 (mTORC1) indicating the neuroprotective and anti-epileptic characteristics of biochanin A in the brain tissue of PTZ-kindled mice.
Collapse
Affiliation(s)
- Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Albrakati A. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24143-24153. [PMID: 36334201 DOI: 10.1007/s11356-022-23954-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Monosodium glutamate (MSG) is used as a flavor, and a taste enhancer was reported to evoke marked neuronal impairments. This study investigated the neuroprotective ability of flavonoid apigenin against neural damage in MSG-administered rats. Adult male rats were allocated into four groups: control, apigenin (20 mg/kg b.wt, orally), MSG (4 g/kg b.wt, orally), and apigenin + MSG at the aforementioned doses for 30 days. Regarding the levels of neurotransmitters, our results revealed that apigenin augmented the activity of acetylcholinesterase (AChE) markedly, and levels of brain monoamines (dopamine, norepinephrine, and serotonin) accompanied by lessening the activity of monoamine oxidase (MAO) as compared to MSG treatment. Moreover, apigenin counteracted the MSG-mediated oxidative stress by decreasing the malondialdehyde (MDA) levels together with elevating the glutathione (GSH) levels. In addition, pretreatment with apigenin induced notable increases in the activities of cortical superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Furthermore, apigenin attenuated the cortical inflammatory stress as indicated by lower levels of pro-inflammatory mediators such as interleukin-1 b (IL-1b), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) as well as downregulated inducible nitric oxide synthase (iNOS) expression levels. Histopathological screening validated the abovementioned results and revealed that apigenin restored the distorted cytoarchitecture of the brain cortex. Thus, the present findings collectively suggest that apigenin exerted significant protection against MSG-induced neurotoxicity by enhancing the cellular antioxidant response and attenuating inflammatory machineries in the rat brain cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
30
|
Anti-nociceptive effects of magnolol via inhibition of TRPV1/P2Y and TLR4/NF-κB signaling in a postoperative pain model. Life Sci 2022; 312:121202. [PMID: 36414090 DOI: 10.1016/j.lfs.2022.121202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
AIMS The current study explored the anti-nociceptive activity of magnolol in post-incisional inflammatory nociceptive pain. MAIN METHODS Preliminary, the anti-inflammatory, antioxidant, and cytoprotective potential of magnolol were confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. Next, an in-vivo model of planter incision surgery was established in BALB/c mice. Tramadol 50 mg/kg intraperitoneal (i.p.) and magnolol (0.1, 1, 10 mg/kg i.p. + 10 mg/kg intra planter) were administered after plantar incision surgery and behavior parameters were measured. KEY FINDINGS The results indicate that magnolol significantly suppressed post-incision-induced mechanical allodynia, thermal hyperalgesia, and paw edema. Magnolol promisingly inhibited post-incision induces nitric oxide (NO), malondialdehyde (MDA), eosinophil peroxidase (EPO), and neutrophil infiltration. Magnolol strongly attenuated post-incision inducing the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inhibited deoxyribonucleic acid (DNA) fragmentation. Magnolol markedly reverses post-incisional histopathological changes and biochemical composition of the incised paw. Magnolol markedly down-regulated post-incisional increase expression of transient receptor potential vanilloid 1 (TRPV1), purinergic (P2Y) nociceptors as well as toll-like receptor 4 (TLR4), nuclear factor kappa light chain enhancer of activated B cell (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) while upregulating the expression of inhibitor of nuclear kappa B alpha (IκB-α). SIGNIFICANCE The present study strongly suggests that magnolol significantly suppressed post-incisional inflammatory nociceptive pain by targeting TRPV1/P2Y and TLR4/NF-κB signaling.
Collapse
|
31
|
Network Pharmacology and Molecular Docking Analysis Reveal Insights into the Molecular Mechanism of Shengma-Gegen Decoction on Monkeypox. Pathogens 2022; 11:pathogens11111342. [DOI: 10.3390/pathogens11111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: A new viral outbreak caused by monkeypox has appeared after COVID-19. As of yet, no specific drug has been found for its treatment. Shengma-Gegen decoction (SMGGD), a pathogen-eliminating and detoxifying agent composed of four kinds of Chinese herbs, has been demonstrated to be effective against several viruses in China, suggesting that it may be effective in treating monkeypox, however, the precise role and mechanisms are still unknown. Methods: Network pharmacology was used to investigate the monkeypox-specific SMGGD targets. These targets were analyzed via String for protein-to-protein interaction (PPI), followed by identification of hub genes with Cytoscape software. Function enrichment analysis of the hub targets was performed. The interactions between hub targets and corresponding ligands were validated via molecular docking. Results: Through screening and analysis, a total of 94 active components and 8 hub targets were identified in the TCM-bioactive compound-hub gene network. Molecular docking results showed that the active components of SMGGD have strong binding affinity for their corresponding targets. According to functional analysis, these hub genes are mainly involved in the TNF, AGE-RAGE, IL-17, and MAPK pathways, which are linked to the host inflammatory response to infection and viral replication. Therefore, SMGGD might suppress the replication of monkeypox virus through the MAPK signaling pathway while also reducing inflammatory damage caused by viral infection. Conclusion: SMGGD may have positive therapeutic effects on monkeypox by reducing inflammatory damage and limiting virus replication.
Collapse
|
32
|
Malik S, Miana G, Ata A, Kanwal M, Maqsood S, Malik I, Kazmi Z. SYNTHESIS, CHARACTERIZATION, IN-SILICO, AND PHARMACOLOGICAL EVALUATION OF NEW 2-AMINO-6-TRIFLUOROMETHOXY BENZOTHIAZOLE DERIVATIVES. Bioorg Chem 2022; 130:106175. [PMID: 36410112 DOI: 10.1016/j.bioorg.2022.106175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a relentless neurodegenerative disorder, is still waiting for safer profile drugs, risk factors affecting AD's pathogenesis include aβ accumulation, tau protein hyperphosphorylation, and neuroinflammation. This research aimed to synthesize 2-amino-6‑trifluoromethoxy benzothiazole schiff bases. Synthesis was straightforward, combining the riluzole skeleton with compounds containing the azomethine group. Schiff bases synthesized were characterized spectroscopically using proton NMR (1H NMR), and FTIR. In-vivo biological evaluation against scopolamine-induced neuronal damage revealed that these newly synthesized schiff bases were effective in protecting neurons against neuroinflammatory mediators. In-vitro results revealed that these compounds had remarkable potential in improving the anti-oxidant levels. It downregulated glutathione (GSH), glutathione S-transferase (GST), catalase levels, and upregulated lipid peroxidation (LPO) levels. Immunohistochemical studies revealed that groups treated with the newly synthesized schiff bases had reduced expression of inflammatory mediators such as cyclooxygenase 2 (COX-2), JNK, tumor necrosis factor (TNF-α), nuclear factor kappa B (NF-kB) in contrast to the disease group. Moreover, molecular docking studies on these compounds also showed that they possessed a better binding affinity for above mentioned inflammatory mediators. The results of these studies showed that 2-amino-6-trifluoromethoxy benzothiazole schiff bases are remarkably effective against oxidative stress-mediated neuroinflammation.
Collapse
|
33
|
Aboutabl ME, Elkhateeb WA, Masoud MA, Daba GM, Afifi AH, Hussein RA. HPLC and GC-MS based metabolic profiles and in vivo anticonvulsant, sedative, and antinociceptive potentials of truffles Tirmania nivea and Tirmania pinoyi hydromethanolic extracts in mice. Biomed Chromatogr 2022; 36:e5481. [PMID: 35971328 DOI: 10.1002/bmc.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
GC-MS and HPLC analyses of the hydromethanolic extracts of the truffles Tirmania nivea (TN) and Tirmania pinoyi (TP) revealed the presence of 18 metabolites and 11 polyphenols, respectively. In vivo, TP extract protected against subcutaneous pentylenetetrazole (scPTZ) and maximal electric shock (MES)-induced convulsions faster than TN. TP (100 and 300 mg/kg) showed 100% protection and longer duration than TN in the scPTZ test. Similarly, at 300 mg/kg, TP demonstrated a quicker start (75%) and longer duration of action (100%) than TN in MES test. In scPTZ test, ED50 of TP demonstrated greater anticonvulsant efficacy than TN. In mice given TP and TN treatments, the brain GABA levels were noticeably increased. TP (100 and 300mg/kg) produced a notable sedative effect in open field test, whereas TN (100 or 300 mg/kg) and TP (300 mg/kg) reduced sleep latency by 79, 52, and 45%, respectively. In writhing test, TN (100 or 300mg/kg) significantly enhanced analgesic efficacy by 50 and 87%, respectively. Comparatively, in formalin test, TP and TN at a dosage of 300 mg/kg decreased the length of the licking by 34 and 59%, respectively. For the first time, this study explains the anticonvulsant, sedative, central, and peripheral analgesic activities of truffle extracts.
Collapse
Affiliation(s)
- Mona E Aboutabl
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Ahmed H Afifi
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Giza, Egypt
| |
Collapse
|
34
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
35
|
khan A, Wang F, Shal B, Khan AU, Zahra SS, Haq IU, Khan S, Rengasamy KRR. Anti-neuropathic pain activity of Ajugarin-I via activation of Nrf2 signaling and inhibition of TRPV1/TRPM8 nociceptors in STZ-induced diabetic neuropathy. Pharmacol Res 2022; 183:106392. [DOI: 10.1016/j.phrs.2022.106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022]
|
36
|
Khan A, Zhang L, Li CH, Khan AU, Shal B, Khan A, Ahmad S, Din FU, Rehman ZU, Wang F, Khan S. Suppression of NF-κB signaling by ECN in an arthritic model of inflammation. BMC Complement Med Ther 2022; 22:158. [PMID: 35698107 PMCID: PMC9195475 DOI: 10.1186/s12906-022-03629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from the Tussilago farfara Linneaus (Asteraceae), was evaluated against acute Carrageenan and chronic complete Freund's adjuvant (CFA)-induced arthritis in mice. METHODS Acute and chronic arthritis were induced by administering Carrageenan and CFA to the intraplantar surface of the mouse paw. Edema, mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia were assessed in the paw. Similarly, histological and immunohistological parameters were assessed following arthritis induced by CFA. Antioxidants, inflammatory cytokines, and oxidative stress markers were also studied in all the treated groups. RESULTS The ECN treatment significantly attenuated edema in the paw and elevated the nocifensive threshold following induction of this inflammatory model. Furthermore, ECN treatment markedly improved the arthritis index and distress symptoms, while attenuating the CFA-induced edema in the paw. ECN treatment also improved the histological parameters in the paw tissue compared to the control. At the same time, there was a significant reduction in edema and erosion in the ECN-treated group, as measured by radiographic analysis. Using the Comet's assay, we showed that ECN treatment protected the DNA from chronic CFA-induced arthritis. Immunohistochemistry analysis showed a marked decrease in the expression level of p-JNK (phosphorylated C-Jun N-terminal kinase), NF-κB (Nuclear factor-kappa B), COX-2 (Cyclooxygenase-2), and TNF-α (Tumour necrosis factor-alpha) compared to the CFA-treated group. Biophysical analysis involving molecular docking, molecular dynamics simulations, and binding free energies of ECN were performed to explore the underlying mechanism. CONCLUSION ECN exhibited significant anti-inflammatory and anti-arthritic activity against Carrageenan and CFA-induced models.
Collapse
Affiliation(s)
- Amna Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Li Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China
| | - Chang Hu Li
- Division of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, KPK, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quad-i-Azam University, Islamabad, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, People's Republic of China.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
37
|
Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomed Pharmacother 2022; 150:113073. [PMID: 35658216 DOI: 10.1016/j.biopha.2022.113073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a well-known type of age-related dementia. The present study was conducted to investigate the effect of xanthoangelol against memory deficit and neurodegeneration associated with AD. Preliminarily, xanthoangelol produced neuroprotective effect against H2O2-induced HT-22 cells. Furthermore, effect of xanthoangelol against scopolamine-induced amnesia in mice was determined by intraperitoneally (i.p.) administering xanthoangelol (1, 10 and 20 mg/kg), 30 min prior to induction. Mice were administered scopolamine at a concentration of 1 mg/kg; i.p. for the induction of amnesia associated with AD. Xanthoangelol dose dependently reduced the symptoms of Alzheimer's disease as observed by the results obtained from the behavioral analysis performed using Morris water maze and Y-maze test. The immunohistochemical analysis suggested that xanthoangelol significantly improved Keap-1/Nrf-2 signaling pathway. It greatly reduced the effects of oxidative stress and showed improvement in the anti-oxidant enzyme such as GSH, GST, SOD and catalase. Additionally, xanthoangelol decreased the expression of transient receptor potential vanilloid 1 (TRPV-1), a nonselective cation channel, involved in synaptic plasticity and memory. It activated the anti-oxidants and attenuated the apoptotic (Bax/Bcl-2) pathway. Xanthoangelol also significantly attenuated the scopolamine-induced neuroinflammation by the inhibition of interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α) levels. The histological analysis, showed a significant reduction in amyloid plaques by xanthoangelol. Therefore, the present study indicated that xanthoangelol has the ability to ameliorate the AD symptoms by attenuating neuroinflammation and neurodegeneration induced by scopolamine.
Collapse
|
38
|
Bibi T, Khan A, Khan AU, Shal B, Ali H, Seo EK, Khan S. Magnolol prevented brain injury through the modulation of Nrf2-dependent oxidative stress and apoptosis in PLP-induced mouse model of multiple sclerosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:717-733. [PMID: 35348816 DOI: 10.1007/s00210-022-02230-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS). The aim of the current study was to investigate the effects of magnolol in an experimental autoimmune encephalomyelitis (EAE) model of MS in female mice. Magnolol (0.1, 1, and 10 mg/kg) was administered once daily for 21 days after immunization of mice. Magnolol post-immunization treatment significantly reversed clinical scoring, EAE-associated pain parameters, and motor dysfunction in a dose-dependent manner. Magnolol treatment significantly inhibited oxidative stress by reducing malondialdehyde (MDA), nitric oxide (NO) production, and myeloperoxidase (MPO) activity while enhancing the level of antioxidants such as reduced glutathione (GSH), glutathione-S-transferase (GST), catalase, and superoxide dismutase (SOD) in the brain and spinal cord. It reduced cytokine levels in the brain and spinal cord. It suppressed CD8+ T cells frequency in the spleen tissue. Magnolol remarkably reversed the EAE-associated histopathology of the brain and spinal cord tissue. Magnolol significantly intensifies the antioxidant defense system by enhancing the expression level of nuclear factor erythroid 2-related factor (Nrf2) while decreasing the expression of inducible nitric oxide synthase (iNOS) and cleaved-caspase-3 in the brain. Molecular docking results showed that magnolol possesses a better binding affinity for Nrf2, iNOS, and caspase-3 proteins. Taken together, the present study demonstrated that magnolol has significant neuroprotective properties in EAE via inhibition of oxidative stress.
Collapse
Affiliation(s)
- Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
39
|
Effect of a Ketogenic Diet on Oxidative Posttranslational Protein Modifications and Brain Homogenate Denaturation in the Kindling Model of Epilepsy in Mice. Neurochem Res 2022; 47:1943-1955. [PMID: 35316463 DOI: 10.1007/s11064-022-03579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used. Four groups of adult male ICR mice (25-30 g) were randomized in standard rodent chow (SRC) group, KD-treatment group; SRC + kindling group; KD + kindling group (n = 10 each). Advanced oxidation protein products (AOPP) and protein carbonyl contents of brain homogenates together with differential scanning calorimetry (DSC) were evaluated. Two exothermic transitions (Exo1 and Exo2) were explored after deconvolution of the thermograms. Factor analysis was applied. The protective effect of KD in the kindling model was demonstrated with both decreased seizure score and increased seizure latency. KD significantly decreased glucose and increased ketone bodies (KB) in blood. Despite its antiseizure effect, the KD increased the AOPP level and the brain proteome's exothermic transitions, suggestive for qualitative modifications. The ratio of the two exothermic peaks (Exo2/Exo1) of the thermograms from the KD vs. SRC treated group differed more than twice (3.7 vs. 1.6). Kindling introduced the opposite effect, changing this ratio to 2.7 for the KD + kindling group. Kindling significantly increased glucose and KB in the blood whereas decreased the BW under the SRC treatment. Kindling decreased carbonyl proteins in the brain irrespectively of the diet. Further evaluations are needed to assess the nature of correspondence of calorimetric images of the brain homogenates with PPM.
Collapse
|
40
|
Li Y, Saravana Kumar P, Liu Y, Qiu J, Ran Y, Yuan M, Fang X, Tan X, Zhao R, zhu J, He M. Tailoring enhanced production and identification of isoflavones in the callus cultures of Pueraria thomsonii Benth and its model verification using response surface methodology (RSM): a combined in vitro and statistical optimization. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Scientifically, isoflavones from Pueraria thomsonii Benth possess diverse pharmacological activities and have been used to treat various diseases. In vitro propagation of callus has contributed to the reliability for large-scale production of target compounds. However, the factors affecting the biosynthesis of major isoflavones daidzin, puerarin and daidzein in the callus culture of P. thomsonii are still not known. Therefore, we aimed to enhance the in vitro production of daidzin, puerarin and daidzein by optimizing three independent factors such as temperature, NAA and 6-BA concentrations.
Results
Our findings showed that the optimal concentrations for in vitro biomass production and efficient synthesis of puerarin, daidzin and daidzein were found to be 0.158%, 0.463% and 0.057%, respectively. In addition, the HPLC fingerprint with chemo-metrics analysis was constructed by linear regression of the puerarin, daidzin and daidzein which was found to be in the range of 1.0–36.0, 5.0–72.0 and 1.0–15.0 mg/mL and the LODs and LOQs were found to be 0.15, 0.52, 0.35 and 0.28, 1.50, 0.50 mg/mL for puerarin, daidzin and daidzein, respectively. Surprisingly, our results were also in agreement with the concentration obtained from the model verification for optimal and efficient production of puerarin, daidzin and daidzein which was found to be 0.162%, 0.458% and 0.049%, respectively.
Conclusions
In summary, our present investigation provides new insights that could facilitate the enhanced production of valuable isoflavones in P. thomsonii using plant cell cultures treated with appropriate elicitor combinations and temperature. As far as the authors are concerned, this is the first report on production of daidzin, puerarin and daidzein at higher yield at laboratory level for a wide range of applications in future food, medicinal and pharmaceutical companies.
Collapse
|
41
|
Alshabi AM, Shaikh IA, Asdaq SMB. The antiepileptic potential of Vateria indica Linn in experimental animal models: Effect on brain GABA levels and molecular mechanisms. Saudi J Biol Sci 2022; 29:3600-3609. [PMID: 35844388 PMCID: PMC9280234 DOI: 10.1016/j.sjbs.2022.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Corresponding author at: Department of Clinical Pharmacy, College of Pharmacy, Najran University, P.O Box: 1988, Zip Code: 55461, Najran, Saudi Arabia.
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
42
|
Daidzin inhibits growth and induces apoptosis through the JAK2/STAT3 in human cervical cancer HeLa cells. Saudi J Biol Sci 2021; 28:7077-7081. [PMID: 34867009 PMCID: PMC8626339 DOI: 10.1016/j.sjbs.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 02/02/2023] Open
Abstract
Daidzin, 4′, 7-dihydroxyisoflavone is an isoflavonic phytoestrogen present in leguminous plants. Traditional Chinese medicine utilizes daidzin to treat various diseases such diarrhea, fever, hepatitis, cardiac problems etc. In current study we examined the anticancer activity of daidzin against human cervical cancer in vitro. HeLa, human cervical cancer cell line was purchased from ATCC and the cells were cultured with DMEM medium. The cytotoxic effect of daidzin against HeLa cell line was analyzed with MTT assay. The IC-50 value was obtained at 20 µM hence the cells were treated with 20 µM of daidzin for further analysis. ROS generation was assessed with DCFH-DA staining and the induction of apoptosis was examined with Rhoadmine-123 staining. Acridine orange and ethidium bromide staining was done to examine the apoptotic and viable cells. Further the matrigel cell adhesion assay was done to analyze the inhibitory property of daidzin against cancer cell adhesion. Apoptotic induction of daidzin was examined by estimating the levels of Caspase 8 & 9 using ELISA technique. Inflammatory and cell proliferation signaling proteins were analyzed with qPCR analysis to confirm the anticancer activity of daidzin against human cervical cancer HeLa cell line. Daidzin significantly generated ROS and altered the mitochondrial membrane permeability in HeLa cell line. The results of AO/EtBr staining prove daidzin induced apoptosis in HeLa cell line and it also inhibited the cell adhesion property of HeLa which is reported in our matrigel cell adhesion assay. It also increased the caspases 8 & 9 which are key regulators of apoptosis. Daidzin significantly decreased the expression of inflammatory gene and cell proliferating signaling molecule. To, conclude our results confirm daidzin effectively decreased inflammation and induced apoptosis in human cervical cancer HeLa cell line.
Collapse
|
43
|
Naveed M, Ullah R, Khan A, Shal B, Khan AU, Khan SZ, Rehman ZU, Khan S. Anti-neuropathic pain activity of a cationic palladium (II) dithiocarbamate by suppressing the inflammatory mediators in paclitaxel-induced neuropathic pain model. Mol Biol Rep 2021; 48:7647-7656. [PMID: 34734371 DOI: 10.1007/s11033-021-06754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic pain state that negatively impacts the quality of life. Currently, available therapies for the treatment of neuropathic pain often lack efficacy and tolerability. Therefore, the search for novel drugs is crucial to obtain treatments that effectively suppress neuropathic pain. OBJECTIVES The present study was undertaken to investigate the antinociceptive properties of (1,4-bis-(diphenylphosphino) butane) palladium (II) chloride monohydrate (Compound 1) in a paclitaxel (PTX)-induced neuropathic pain model. METHODS Initially, behavioral tests such as mechanical and cold allodynia as well as thermal and tail immersion hyperalgesia were performed to investigate the antinociceptive potential of Compound 1 (5 and 10 mg/kg, b.w). RT-PCR was performed to determine the effect of Compound 1 on the mRNA expression level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-1β, and IL-6. In addition, antioxidant protein, nitric oxide (NO), and malondialdehyde (MDA) levels were also determined. RESULTS The results demonstrated that once-daily dosing of Compound 1 significantly suppressed the PTX-induced behavioral pain responses dose-dependently. The mRNA gene expressions of iNOS, COX-2, and inflammatory cytokines were markedly reduced by Compound 1. Furthermore, it enhanced the level of antioxidant enzymes and lowered the level of MDA and NO production. CONCLUSION These findings suggest that the antinociceptive potential of Compound 1 in the PTX-induced neuropathic pain model is via suppression of oxidative stress and inflammation. Thus, Compound 1 might be a potential candidate for the therapeutic management of PTX induced neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shahan Zeb Khan
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, University of Science and Technology, KPK, Bannu, 28100, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
44
|
Khan A, Shal B, Khan AU, Bibi T, Islam SU, Baig MW, Haq IU, Ali H, Ahmad S, Khan S. Withametelin, a novel phytosterol, alleviates neurological symptoms in EAE mouse model of multiple sclerosis via modulation of Nrf2/HO-1 and TLR4/NF-κB signaling. Neurochem Int 2021; 151:105211. [PMID: 34688804 DOI: 10.1016/j.neuint.2021.105211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system (CNS) that remains incurable. Withametelin (WMT), a phytosterol, showed diverse biological activities isolated from the leaves of Datura innoxa. In the present study, we used an in vitro model of HT22 and BV-2 cell lines and an in vivo murine model of MS, experimental autoimmune encephalomyelitis (EAE), to explore the antioxidant and anti neuroinflammatory potential of WMT. The results showed that pretreatment with WMT markedly inhibited H2O2-induced cytotoxicity and oxidative stress in a dose-dependent manner. Correspondingly, WMT post-immunization treatment significantly attenuated EAE-induced clinical score, weight loss, neuropathic pain behaviors, and motor dysfunction. It markedly lowers EAE-induced elevated circulating leucocytes, spinal deformity, and splenomegaly. It strikingly inhibited the Evans blue and FITC extravasation in the brain. It remarkably reversed the EAE-induced histopathological alteration of the brain, spinal cord, eye, and optic nerve. It significantly intensified the antioxidant defense mechanism by improving the expression level of nuclear factor-erythroid-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1) but reducing the expression level of the Kelch-like-ECH-associated-protein-1 (keap-1), inducible-nitric-oxide-synthase (iNOS) in the CNS. Likewise, it markedly suppressed neuroinflammation by reducing the expression level of toll-like-receptor 4 (TLR4), nuclear-factor-kappa-B (NF-κB), activator-protein-1 (AP-1) but increased the expression level IkB-α in the CNS. Furthermore, molecular dynamics simulations and MMPBSA binding free energies were determined to validate the dynamic stability of complexes and shed light on the atomic level intermolecular interaction energies. Taken together, this study showed that WMT has significant neuroprotective potential in EAE via modulation of Nrf2 mediated-oxidative stress and NF-κB mediated inflammation.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
45
|
Singh T, Mishra A, Goel RK. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab Brain Dis 2021; 36:1573-1590. [PMID: 34427842 DOI: 10.1007/s11011-021-00823-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022]
Abstract
Pentylenetetrazole (PTZ)-induced seizure is one of the gold standard mouse models for rapid evaluation of novel anticonvulsants. Synchronically, PTZ induced kindling in mice is also a simple and well accepted model of chronic epilepsy. PTZ kindling has been explored for studying epileptogenesis, epilepsy-associated comorbidities, and refractory epilepsy. This review summarizes the potential of PTZ kindling in mice and its modifications for its face, construct, and predictive validity to screen antiepileptogenic drugs, combined or add on novel and safe therapies for treatment of epilepsy-associated depression and cognitive impairment as well as effective interventions for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Awanish Mishra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research , Guwahati , Changsari, Kamrup , 781101 , Assam , India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
46
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
47
|
Khan A, Shal B, Khan AU, Ullah R, Baig MW, ul Haq I, Seo EK, Khan S. Suppression of TRPV1/TRPM8/P2Y Nociceptors by Withametelin via Downregulating MAPK Signaling in Mouse Model of Vincristine-Induced Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22116084. [PMID: 34199936 PMCID: PMC8200233 DOI: 10.3390/ijms22116084] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 μg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.
Collapse
Affiliation(s)
- Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Waleed Baig
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Ihsan ul Haq
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (B.S.); (A.U.K.); (M.W.B.); (I.u.H.)
- Correspondence: (E.K.S.); (S.K.); Tel.: +82-2-3277-3047 (E.K.S.); +92-51-9064-4056 (S.K.)
| |
Collapse
|
48
|
Yu Y, Chen J, Zhang X, Wang Y, Wang S, Zhao L, Wang Y. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases. Chin Med 2021; 16:42. [PMID: 34059101 PMCID: PMC8166029 DOI: 10.1186/s13020-021-00452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic relapsing intestinal inflammations with increasing global incidence, and new drug development remains in urgent demand for IBD management. To identify effective traditional Chinese medicine (TCM) formulae and compounds in IBD treatment, we innovatively combined the techniques of knowledge mining, high-content screening and high-resolution mass spectrometry, to conduct a systematic screening in Zhongjing formulae, which is a large collection of TCM prescriptions with most abundant clinical evidences. METHODS Using Word2vec-based text learning, the correlations between 248 Zhongjing formulae and IBD typical symptoms were analyzed. Next, from the top three formulae with predicted relationship with IBD, TCM fractions were prepared and screened on a transgenic zebrafish IBD model for their therapeutic effects. Subsequently, the chemical compositions of the fraction hits were analyzed by mass spectrometry, and the major compounds were further studied for their anti-IBD effects and potential mechanisms. RESULTS Through knowledge mining, Peach Blossom Decoction, Pulsatilla Decoction, and Gegen Qinlian Decoction were predicted to be the three Zhongjing formulae mostly related to symptoms typical of IBD. Seventy-four fractions were prepared from the three formulae and screened in TNBS-induced zebrafish IBD model by high-content analysis, with the inhibition on the intestinal neutrophil accumulation and ROS level quantified as the screening criteria. Six herbal fractions showed significant effects on both pathological processes, which were subsequently analyzed by mass spectrometry to determine their chemical composition. Based on the major compounds identified by mass spectrometry, a second-round screen was conducted and six compounds (palmatine, daidzin, oroxyloside, chlorogenic acid, baicalin, aesculin) showed strong inhibitory effects on the intestinal inflammation phenotypes. The expression of multiple inflammatory factors, including il1β, clcx8a, mmp and tnfα, were increased in TNBS-treated fish, which were variously inhibited by the compounds, with aesculin showing the most potent effects. Moreover, aesculin and daidzin also upregulated e-cadherin's expression. CONCLUSION Taken together, we demonstrated the regulatory effects of several TCM formulae and their active compounds in the treatment of IBD, through a highly efficient research strategy, which can be applied in the discovery of effective TCM formulae and components in other diseases.
Collapse
Affiliation(s)
- Yunru Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
49
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|
50
|
Khan A, Khan A, Khalid S, Shal B, Kang E, Lee H, Laumet G, Seo EK, Khan S. 7β-(3-Ethyl- cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro- Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules 2021; 26:E181. [PMID: 33401491 PMCID: PMC7795484 DOI: 10.3390/molecules26010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Eunwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Hwaryeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| |
Collapse
|