1
|
Marshall P. Finding an Optimal Level of GDNF Overexpression: Insights from Dopamine Cycling. Cell Mol Neurobiol 2023; 43:3179-3189. [PMID: 37410316 PMCID: PMC10477250 DOI: 10.1007/s10571-023-01375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The application of glial cell line-derive neurotrophic factor (GDNF) to cell cultures and animal models has demonstrated positive effects upon dopaminergic neuronal survival and development, function, restoration, and protection. On this basis, recombinant GDNF protein has been trialled in the treatment of late-stage human Parkinson's disease patients with only limited success that is likely due to a lack of viable receptor targets in an advanced state of neurodegeneration. The latest research points to more refined approaches of modulating GDNF signalling and an optimal quantity and spatial regulation of GDNF can be extrapolated using regulation of dopamine as a proxy measure. The basic research literature on dopaminergic effects of GDNF in animal models is reviewed, concluding that a twofold increase in natively expressing cells increases dopamine turnover and maximises neuroprotective and beneficial motor effects whilst minimising hyperdopaminergia and other side-effects. Methodological considerations for measurement of dopamine levels and neuroanatomical distinctions are made between populations of dopamine neurons and their respective effects upon movement and behaviour that will inform future research into this still-relevant growth factor.
Collapse
Affiliation(s)
- Pepin Marshall
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
2
|
Kasanga EA, Owens CL, Cantu MA, Richard AD, Davis RW, McDivitt LM, Blancher B, Pruett BS, Tan C, Gajewski A, Manfredsson FP, Nejtek VA, Salvatore MF. GFR-α1 Expression in Substantia Nigra Increases Bilaterally Following Unilateral Striatal GDNF in Aged Rats and Attenuates Nigral Tyrosine Hydroxylase Loss Following 6-OHDA Nigrostriatal Lesion. ACS Chem Neurosci 2019; 10:4237-4249. [PMID: 31538765 DOI: 10.1021/acschemneuro.9b00291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) improved motor function in Parkinson's disease (PD) patients in Phase I clinical trials, and these effects persisted months after GDNF discontinuation. Conversely, phase II clinical trials reported no significant effects on motor improvement vs placebo. The disease duration and the quantity, infusion approach, and duration of GDNF delivery may affect GDNF efficacy in PD treatment. However, identifying mechanisms activated by GDNF that affect nigrostriatal function may reveal additional avenues to partially restore nigrostriatal function. In PD and aging models, GDNF affects tyrosine hydroxylase (TH) expression or phosphorylation in substantia nigra (SN), long after a single GDNF injection in striatum. In aged rats, the GDNF family receptor, GFR-α1, increases TH expression and phosphorylation in SN. To determine if GFR-α1 could be a mechanistic link in long-term GDNF impact, we conducted two studies; first to determine if a single unilateral striatal delivery of GDNF affected GFR-α1 and TH over time (1 day, 1 week, and 4 weeks) in the striatum or SN in aged rats, and second, to determine if soluble GFR-α1 could mitigate TH loss following 6-hydroxydopamine (6-OHDA) lesion. In aged rats, GDNF bilaterally increased ser31 TH phosphorylation and GFR-α1 expression in SN at 1 day and 4 weeks after GDNF, respectively. In striatum, GFR-α1 expression decreased 1 week after GDNF, only on the GDNF-injected side. In 6-OHDA-lesioned rats, recombinant soluble GFR-α1 mitigated nigral, but not striatal, TH protein loss following 6-OHDA. Together, these results show GDNF has immediate and long-term impact on dopamine regulation in the SN, which includes a gradual increase in GFR-α1 expression that may sustain TH expression and dopamine function therein.
Collapse
Affiliation(s)
- Ella A Kasanga
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Catherine L Owens
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Mark A Cantu
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Adam D Richard
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Richard W Davis
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Lisa M McDivitt
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Blake Blancher
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Brandon S Pruett
- Department of Pharmacology, Toxicology, & Neuroscience , Louisiana State University Health Sciences Center , Shreveport , Louisiana 71130 , United States
| | - Christopher Tan
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Austin Gajewski
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology , Barrow Neurological Institute , Phoenix , Arizona 85013 , United States
| | - Vicki A Nejtek
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Michael F Salvatore
- Institute for Healthy Aging , University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
3
|
Renko JM, Bäck S, Voutilainen MH, Piepponen TP, Reenilä I, Saarma M, Tuominen RK. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Elevates Stimulus-Evoked Release of Dopamine in Freely-Moving Rats. Mol Neurobiol 2018; 55:6755-6768. [PMID: 29349573 PMCID: PMC6061195 DOI: 10.1007/s12035-018-0872-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/07/2018] [Indexed: 01/12/2023]
Abstract
Neurotrophic factors (NTFs) hold potential as disease-modifying therapies for neurodegenerative disorders like Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), and mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown neuroprotective and restorative effects on nigral dopaminergic neurons in various animal models of Parkinson's disease. To date, however, their effects on brain neurochemistry have not been compared using in vivo microdialysis. We measured extracellular concentration of dopamine and activity of dopamine neurochemistry-regulating enzymes in the nigrostriatal system of rat brain. NTFs were unilaterally injected into the striatum of intact Wistar rats. Brain microdialysis experiments were performed 1 and 3 weeks later in freely-moving animals. One week after the treatment, we observed enhanced stimulus-evoked release of dopamine in the striatum of MANF-treated rats, but not in rats treated with GDNF or CDNF. MANF also increased dopamine turnover. Although GDNF did not affect the extracellular level of dopamine, we found significantly elevated tyrosine hydroxylase (TH) and catechol-O-methyltransferase (COMT) activity and decreased monoamine oxidase A (MAO-A) activity in striatal tissue samples 1 week after GDNF injection. The results show that GDNF, CDNF, and MANF have divergent effects on dopaminergic neurotransmission, as well as on dopamine synthetizing and metabolizing enzymes. Although the cellular mechanisms remain to be clarified, knowing the biological effects of exogenously administrated NTFs in intact brain is an important step towards developing novel neurotrophic treatments for degenerative brain diseases.
Collapse
Affiliation(s)
- Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| | - Susanne Bäck
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Ilkka Reenilä
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Li J, Xia Z, Sun X, Zhang R, Huang G, Hickling R, Xia Z, Hu Y, Zhang Y. Reversal of dopamine neurons and locomotor ability degeneration in aged rats with smilagenin. Neuroscience 2013; 245:90-8. [PMID: 23624370 DOI: 10.1016/j.neuroscience.2013.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this paper is to study the effect of smilagenin (SMI) (PYM50028), a sapogenin compound originally identified from Chinese medicinal herb, on dopamine neurons and locomotor ability in aged rats. Experiments were carried out on young and aged Sprague-Dawley rats, which were daily administered with either SMI (18mg/kg/day) or vehicle (0.5% sodium carboxymethycellulose [CMCNa]). Open-field and rotarod performance tests revealed that behavioral ability was impaired in aged rats and was improved by oral administration of smilagenin. Immunohistochemical data showed that tyrosine hydroxylase (TH)-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) were altered with aging and were increased by smilagenin treatment. Likewise, the dopamine receptor density and the striatal dopamine transporter (DAT) density ((125)I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane [(125)I-FP-CIT] autoradiography) were significantly lowered in aged rats as compared to young rats, and treatment with smilagenin significantly elevated the dopamine receptor and DAT density in aged rats. Furthermore, smilagenin enhances glial cell-derived neurotrophic factor (GDNF) release both in the striatum and midbrain. These results indicate a possible role of smilagenin in the treatment of age-related extrapyramidal disorders.
Collapse
Affiliation(s)
- J Li
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ruozi B, Belletti D, Bondioli L, De Vita A, Forni F, Vandelli MA, Tosi G. Neurotrophic factors and neurodegenerative diseases: a delivery issue. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:207-47. [PMID: 22748832 DOI: 10.1016/b978-0-12-386986-9.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophic factors (NTFs) represent one of the most stimulating challenge in neurodegenerative diseases, due to their potential in neurorestoring and neuroprotection. Despite the large number of proofs-of-concept and evidences of their activity, most of the clinical trials, mainly regarding Parkinson's disease and Alzheimer's disease, demonstrated several failures of the therapeutic intervention. A large number of researches were conducted on this hot topic of neuroscience, clearly evidencing the advantages of NTF approach, but evidencing the major limitations in its application. The inability in crossing the blood-brain barrier and the lack of selectivity actually represent some of the most highlighted limits of NTFs-based therapy. In this review, beside an overview of NTF activity versus the main neuropathological disorders, a summary of the most relevant approaches, from invasive to noninvasive strategies, applied for improving NTF delivery to the central nervous systems is critically considered and evaluated.
Collapse
Affiliation(s)
- B Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Pruett BS, Salvatore MF. GFR α-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. J Neurochem 2010; 115:707-15. [DOI: 10.1111/j.1471-4159.2010.06963.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Within-session analysis of amphetamine-elicited rotation behavior reveals differences between young adult and middle-aged F344/BN rats with partial unilateral striatal dopamine depletion. Pharmacol Biochem Behav 2010; 96:423-8. [PMID: 20600242 DOI: 10.1016/j.pbb.2010.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/19/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
Preclinical modeling of Parkinson's disease using 6-hydroxydopamine (6-OHDA) has been valuable in developing and testing therapeutic strategies. Recent efforts have focused on modeling early stages of disease by infusing 6-OHDA into the striatum. The partial DA depletion that follows intrastriatal 6-OHDA is more variable than the near-complete depletion following medial forebrain bundle infusion, and behavioral screening assays are not as well characterized in the partial lesion model. We compared relationships between amphetamine-elicited rotation behavior and DA depletion following intrastriatal 6-OHDA (12.5 microg) in 6 month vs. 18 month F344/BN rats, at 2-weeks and 6-weeks post-lesion. We compared the total number of rotations with within-session (bin-by-bin) parameters of rotation behavior as indicators of DA depletion. Striatal DA depletion was greater in the young adult than in the middle-aged rats at 2 weeks but not at 6 weeks post-lesion. The total number of rotations for the whole session and striatal DA depletion did not differ between the two age groups. Regression analysis revealed a greater relationship between within-session parameters of rotation behavior and DA depletion in the middle-aged group than in the young adult group. These results have implications for estimating DA depletion in preclinical studies using rats of different ages.
Collapse
|
8
|
Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats. Neurosci Lett 2010; 472:90-3. [PMID: 20144690 DOI: 10.1016/j.neulet.2010.01.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 12/12/2022]
Abstract
Normal aging is associated with chronic oxidative stress. In the basal ganglia, oxidative stress may contribute to the increased risk of Parkinson's disease in the elderly. Neurons are thought to actively utilize compensatory defense mechanisms, such as heat shock proteins (HSPs), to protect from persisting stress. Despite their protective role, little is known about HSP expression in the aging basal ganglia. The purpose of this study was to examine HSP expression in striatum, substantia nigra, globus pallidus and cortex in 6-, 18- and 30-month-old Fischer 344/Brown Norway rats. We found robust age-related increases in phosphorylated and total HSP25 in each brain region studied. Conversely, HSP72 (the inducible form of HSP70) was reduced with age, but only in the striatum. p38 MAPK, a protein implicated in activating HSP25, did not change with age, nor did HSC70 (the constitutive form of HSP70), or HSP60. These results suggest that HSP25 is especially responsive to age-related stress in the basal ganglia.
Collapse
|
9
|
Salvatore MF, Gerhardt GA, Dayton RD, Klein RL, Stanford JA. Bilateral effects of unilateral GDNF administration on dopamine- and GABA-regulating proteins in the rat nigrostriatal system. Exp Neurol 2009; 219:197-207. [PMID: 19460370 DOI: 10.1016/j.expneurol.2009.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 04/24/2009] [Accepted: 05/09/2009] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) affects GABA neuronal function in the striatum and together these neurotransmitters play a large role in locomotor function. We recently reported that unilateral striatal administration of GDNF, a growth factor that has neurotrophic effects on DA neurons and enhances DA release, bilaterally increased striatal neuron activity related to locomotion in aged rats. We hypothesized that the GDNF enhancement of DA function and resulting bilateral enhancement of striatal neuronal activity was due to prolonged bilateral changes in DA- and GABA-regulating proteins. Therefore in these studies we assessed dopamine- and GABA-regulating proteins in the striatum and substantia nigra (SN) of 24 month old Fischer 344 rats, 30 days after a single unilateral striatal delivery of GDNF. The nigrostriatal proteins investigated were the DA transporter (DAT), tyrosine hydroxylase (TH), and TH phosphorylation and were examined by blot-immunolabeling. The striatal GABA neuron-related proteins were examined by assay of the DA D1 receptor, DARPP-32, DARPP-32 Thr34 phosphorylation, and glutamic acid decarboxylase (GAD). Bilateral effects of GDNF on TH and DAT occurred only in the SN, as 30 microg GDNF increased ser19 phosphorylation, and 100 microg GDNF decreased DAT and TH protein levels. GDNF also produced bilateral changes in GAD protein in the striatum. A decrease in DARPP-32 occurred in the ipsilateral striatum, while increased D1 receptor and DARPP-32 phosphorylation occurred in the contralateral striatum. The 30 microg GDNF infusion into the lateral striatum was confined to the ipsilateral striatum and substantia nigra. Thus, long-lasting bilateral effects of GDNF on proteins regulating DA and GABA neuronal function likely alter physiological properties in neurons, some with bilateral projections, associated with locomotion. Enhanced nigrostriatal excitability and DA release by GDNF may trigger these bilateral effects.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology, Toxicology, and Neuroscience, LSU Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | | | |
Collapse
|
10
|
McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2007; 22:982-1001. [PMID: 18056830 DOI: 10.1096/fj.07-9326rev] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D insufficiency is common in the United States; the elderly and African-Americans are at particularly high risk of deficiency. This review, written for a broad scientific readership, presents a critical overview of scientific evidence relevant to a possible causal relationship between vitamin D deficiency and adverse cognitive or behavioral effects. Topics discussed are 1) biological functions of vitamin D relevant to cognition and behavior; 2) studies in humans and rodents that directly examine effects of vitamin D inadequacy on cognition or behavior; and 3) immunomodulatory activity of vitamin D relative to the proinflammatory cytokine theory of cognitive/behavioral dysfunction. We conclude there is ample biological evidence to suggest an important role for vitamin D in brain development and function. However, direct effects of vitamin D inadequacy on cognition/behavior in human or rodent systems appear to be subtle, and in our opinion, the current experimental evidence base does not yet fully satisfy causal criteria. Possible explanations for the apparent inconsistency between results of biological and cognitive/behavioral experiments, as well as suggested areas for further research are discussed. Despite residual uncertainty, recommendations for vitamin D supplementation of at-risk groups, including nursing infants, the elderly, and African-Americans appear warranted to ensure adequacy.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
11
|
Greger B, Kateb B, Gruen P, Patterson PH. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals. J Neurosci Methods 2007; 163:321-5. [PMID: 17499854 PMCID: PMC2683260 DOI: 10.1016/j.jneumeth.2007.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
We describe a device for assessing the effects of diffusible molecules on electrophysiological recordings from multiple neurons. This device allows for the infusion of reagents through a cannula located among an array of micro-electrodes. The device can easily be customized to target specific neural structures. It is designed to be chronically implanted so that isolated neural units and local field potentials are recorded over the course of several weeks or months. Multivariate statistical and spectral analysis of electrophysiological signals acquired using this system could quantitatively identify electrical "signatures" of therapeutically useful drugs.
Collapse
Affiliation(s)
- Bradley Greger
- University of Utah, Department of Bioengineering, Salt Lake City, UT 84112, United States.
| | | | | | | |
Collapse
|