1
|
Björklund A, Barker RA. The basal forebrain cholinergic system as target for cell replacement therapy in Parkinson's disease. Brain 2024; 147:1937-1952. [PMID: 38279949 PMCID: PMC11146424 DOI: 10.1093/brain/awae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years there has been a renewed interest in the basal forebrain cholinergic system as a target for the treatment of cognitive impairments in patients with Parkinson's disease, due in part to the need to explore novel approaches to treat the cognitive symptoms of the disease and in part to the development of more refined imaging tools that have made it possible to monitor the progressive changes in the structure and function of the basal forebrain system as they evolve over time. In parallel, emerging technologies allowing the derivation of authentic basal forebrain cholinergic neurons from human pluripotent stem cells are providing new powerful tools for the exploration of cholinergic neuron replacement in animal models of Parkinson's disease-like cognitive decline. In this review, we discuss the rationale for cholinergic cell replacement as a potential therapeutic strategy in Parkinson's disease and how this approach can be explored in rodent models of Parkinson's disease-like cognitive decline, building on insights gained from the extensive animal experimental work that was performed in rodent and primate models in the 1980s and 90s. Although therapies targeting the cholinergic system have so far been focused mainly on patients with Alzheimer's disease, Parkinson's disease with dementia may be a more relevant condition. In Parkinson's disease with dementia, the basal forebrain system undergoes progressive degeneration and the magnitude of cholinergic cell loss has been shown to correlate with the level of cognitive impairment. Thus, cell therapy aimed to replace the lost basal forebrain cholinergic neurons represents an interesting strategy to combat some of the major cognitive impairments in patients with Parkinson's disease dementia.
Collapse
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
2
|
Prinzi C, Kostenko A, de Leo G, Gulino R, Leanza G, Caccamo A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. BIOLOGY 2023; 12:1264. [PMID: 37759663 PMCID: PMC10526041 DOI: 10.3390/biology12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Noradrenaline (NA) depletion occurs in Alzheimer's disease (AD); however, its relationship with the pathological expression of Tau and transactive response DNA-binding protein 43 (TDP-43), two major hallmarks of AD, remains elusive. Here, increasing doses of a selective noradrenergic immunotoxin were injected into developing rats to generate a model of mild or severe NA loss. At about 12 weeks post-lesion, dose-dependent working memory deficits were detected in these animals, associated with a marked increase in cortical and hippocampal levels of TDP-43 phosphorylated at Ser 409/410 and Tau phosphorylated at Thr 217. Notably, the total levels of both proteins were largely unaffected, suggesting a direct relationship between neocortical/hippocampal NA depletion and the phosphorylation of pathological Tau and TDP-43 proteins. As pTD43 is present in 23% of AD cases and pTau Thr217 has been detected in patients with mild cognitive impairment that eventually would develop into AD, improvement of noradrenergic function in AD might represent a viable therapeutic approach with disease-modifying potential.
Collapse
Affiliation(s)
- Chiara Prinzi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| | - Anna Kostenko
- B.R.A.I.N. (Basic Research and Integrative Neuroscience) Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Gioacchino de Leo
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Triste, Italy;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
3
|
de Leo G, Gulino R, Coradazzi M, Leanza G. Acetylcholine and noradrenaline differentially regulate hippocampus-dependent spatial learning and memory. Brain Commun 2022; 5:fcac338. [PMID: 36632183 PMCID: PMC9825812 DOI: 10.1093/braincomms/fcac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Severe loss of cholinergic neurons in the basal forebrain nuclei and of noradrenergic neurons in the locus coeruleus are almost invariant histopathological hallmarks of Alzheimer's disease. However, the role of these transmitter systems in the spectrum of cognitive dysfunctions typical of the disease is still unclear, nor is it yet fully known whether do these systems interact and how. Selective ablation of either neuronal population, or both of them combined, were produced in developing animals to investigate their respective and/or concurrent contribution to spatial learning and memory, known to be severely affected in Alzheimer's disease. Single or double lesions were created in 4-8 days old rats by bilateral intraventricular infusion of two selective immunotoxins. At about 16 weeks of age, the animals underwent behavioural tests specifically designed to evaluate reference and working memory abilities, and their brains were later processed for quantitative morphological analyses. Animals with lesion to either system alone showed no significant reference memory deficits which, by contrast, were evident in the double-lesioned subjects. These animals could not adopt an efficient search strategy on a given testing day and were unable to transfer all relevant information to the next day, suggesting deficits in acquisition, storage and/or recall. Only animals with single noradrenergic or double lesions exhibited impaired working memory. Interestingly, ablation of cholinergic afferents to the hippocampus stimulated a robust ingrowth of thick fibres from the superior cervical ganglion which, however, did not appear to have contributed to the observed cognitive performance. Ascending cholinergic and noradrenergic afferents to the hippocampus and neocortex appear to be primarily involved in the regulation of different cognitive domains, but they may functionally interact, mainly at hippocampal level, for sustaining normal learning and memory. Moreover, these transmitter systems are likely to compensate for each other, but apparently not via ingrowing sympathetic fibres.
Collapse
Affiliation(s)
| | | | - Marino Coradazzi
- Neurogenesis and Repair Lab., B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Via Fleming 2, 34127 Trieste, Italy
| | - Giampiero Leanza
- Correspondence to: Giampiero Leanza Department of Drug and Health Sciences, University of Catania Via S. Sofia 64, 95125 Catania, Italy E-mail:
| |
Collapse
|
4
|
Mustafa I, Awad A, Fgaier H, Mansur A, Elkamel A. Compartmental modeling and analysis of the effect of β-amyloid on acetylcholine neurocycle via choline leakage hypothesis. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2020.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Giusto E, Codrich M, Leo G, Francardo V, Coradazzi M, Parenti R, Gulisano M, Vicario N, Gulino R, Leanza G. Compensatory changes in degenerating spinal motoneurons sustain functional sparing in the SOD1‐G93A mouse model of amyotrophic lateral sclerosis. J Comp Neurol 2019; 528:231-243. [DOI: 10.1002/cne.24751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Elena Giusto
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Marta Codrich
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Gioacchino Leo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Veronica Francardo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Marino Coradazzi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
| | - Massimo Gulisano
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
- Department of Drug Sciences University of Catania Catania Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
| | - Giampiero Leanza
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
- Department of Drug Sciences University of Catania Catania Italy
| |
Collapse
|
6
|
Pintus R, Riggi M, Cannarozzo C, Valeri A, de Leo G, Romano M, Gulino R, Leanza G. Essential role of hippocampal noradrenaline in the regulation of spatial working memory and TDP-43 tissue pathology. J Comp Neurol 2018; 526:1131-1147. [PMID: 29355945 DOI: 10.1002/cne.24397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
Extensive loss of noradrenaline-containing neurons and fibers is a nearly invariant feature of Alzheimer's Disease (AD). However, the exact noradrenergic contribution to cognitive and histopathological changes in AD is still unclear. Here, this issue was addressed following selective lesioning and intrahippocampal implantation of embryonic noradrenergic progenitors in developing rats. Starting from about 3 months and up to 12 months post-surgery, animals underwent behavioral tests to evaluate sensory-motor, as well as spatial learning and memory, followed by post-mortem morphometric analyses. At 9 months, Control, Lesioned and Lesion + Transplant animals exhibited equally efficient sensory-motor and reference memory performance. Interestingly, working memory abilities were seen severely impaired in Lesion-only rats and fully recovered in Transplanted rats, and appeared partly lost again 2 months after ablation of the implanted neuroblasts. Morphological analyses confirmed the almost total lesion-induced noradrenergic neuronal and terminal fiber loss, the near-normal reinnervation of the hippocampus promoted by the transplants, and its complete removal by the second lesion. Notably, the noradrenergic-rich transplants normalized also the nuclear expression of the transactive response DNA-binding protein 43 (TDP-43) in various hippocampal subregions, whose cytoplasmic (i.e., pathological) occurrence appeared dramatically increased as a result of the lesions. Thus, integrity of ascending noradrenergic inputs to the hippocampus may be required for the regulation of specific aspects of learning and memory and to prevent TDP-43 tissue pathology.
Collapse
Affiliation(s)
- Roberta Pintus
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Riggi
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Cecilia Cannarozzo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Andrea Valeri
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gioacchino de Leo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med Chem 2016; 8:1179-89. [PMID: 27402297 DOI: 10.4155/fmc-2016-0006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND For long time Alzheimer's disease has been attributed to a cholinergic deficit. More recently, it has been considered dependent on the accumulation of the amyloid beta peptide (Aβ), which promotes neuronal loss and impairs neuronal function. Results/methodology: In the present study, using biophysical and biochemical experiments we tested the hypothesis that in addition to its role as a neurotransmitter, acetylcholine may exert its action as an anti-Alzheimer agent through a direct interaction with Aβ. CONCLUSION Our data provide evidence that acetylcholine favors the soluble peptide conformation and exerts a neuroprotective effect against the neuroinflammatory and toxic effects of Aβ. The present paper paves the way toward the development of new polyfunctional anti-Alzheimer therapeutics capable of intervening on both the cholinergic transmission and the Aβ aggregation.
Collapse
|
8
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
9
|
Grothe MJ, Ewers M, Krause B, Heinsen H, Teipel SJ. Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement 2014; 10:S344-53. [PMID: 24418052 PMCID: PMC4092050 DOI: 10.1016/j.jalz.2013.09.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/09/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Both neurodegeneration of the cholinergic basal forebrain (BF) and deposition of β-amyloid are early events in the course of Alzheimer's disease (AD). Associations between increased amyloid pathology and cholinergic atrophy have been described in autopsy studies. METHODS We used structural MRI and AV45-PET amyloid imaging data of 225 cognitively normal or mildly impaired elderly subjects from the Alzheimer's Disease Neuroimaging Initiative to assess in vivo associations between BF atrophy and cortical amyloid deposition. Associations were examined using region-of-interest (ROI) and voxel-based approaches with reference to cytoarchitectonic mappings of the cholinergic BF nuclei. RESULTS ROI- and voxel-based approaches yielded complementary evidence for an association between BF volume and cortical amyloid deposition in presymptomatic and predementia stages of AD, irrespective of age, gender, and APOE genotype. CONCLUSIONS The observed correlations between BF atrophy and cortical amyloid load likely reflect associations between cholinergic degeneration and amyloid pathology as reported in neuropathologic examination studies.
Collapse
Affiliation(s)
- Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Bernd Krause
- Department of Nuclear Medicine, University of Rostock, Rostock, Germany
| | - Helmut Heinsen
- Laboratory of Morphological Brain Research, Department of Psychiatry, University of Würzburg, Würtzburg, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|