1
|
Xu L, Shan D, Wu D. Infarct volume as a predictor and therapeutic target in post-stroke cognitive impairment. Front Med (Lausanne) 2025; 12:1519538. [PMID: 39967599 PMCID: PMC11832508 DOI: 10.3389/fmed.2025.1519538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Post-stroke cognitive impairment is one of the most common consequences of stroke, affecting more than half of stroke patients, especially in the geriatric population. Post-ischemic stroke cognitive impairment (PISCI) is particularly detrimental, as it can exacerbate a patient's disability. Given that the severe consequences of adverse life outcomes are major contributors to disability and death among survivors of ischemic stroke, preventing stroke and PISCI remains a fundamental strategy for maintaining optimal brain health. Recent studies have extensively investigated the epidemiology, diagnosis, and management of PISCI. Nevertheless, significant gaps persist in our understanding of its pathophysiological mechanisms and potential therapeutic targets, which warrants further research. Factors such as baseline brain health, cerebral small vessel disease, and stroke characteristics (e.g., infarct location, severity, and morphology) have been associated with PISCI. However, its pathophysiology remains inadequately understood. Recent research suggests that infarct volume may serve as a novel indicator for predicting and managing PISCI. Thus, this review aims to expand our understanding of factors influencing PISCI and to elucidate its pathophysiological mechanisms. In particular, infarct volume has been proposed as a potential target and may play a critical role in predicting and managing PISCI. We advocate for improved and timely predictions of PISCI to enhance the quality of life for patients and reduce the economic and emotional burden on caregivers.
Collapse
Affiliation(s)
- Lingjia Xu
- Department of Neurology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Dan Shan
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States
| | - Danling Wu
- Department of Neurology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
2
|
Dammavalam V, Rupert D, Lanio M, Jin Z, Nadkarni N, Tsirka SE, Bergese SD. Dementia after Ischemic Stroke, from Molecular Biomarkers to Therapeutic Options. Int J Mol Sci 2024; 25:7772. [PMID: 39063013 PMCID: PMC11276729 DOI: 10.3390/ijms25147772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is a leading cause of disability worldwide. While much of post-stroke recovery is focused on physical rehabilitation, post-stroke dementia (PSD) is also a significant contributor to poor functional outcomes. Predictive tools to identify stroke survivors at risk for the development of PSD are limited to brief screening cognitive tests. Emerging biochemical, genetic, and neuroimaging biomarkers are being investigated in an effort to unveil better indicators of PSD. Additionally, acetylcholinesterase inhibitors, NMDA receptor antagonists, dopamine receptor agonists, antidepressants, and cognitive rehabilitation are current therapeutic options for PSD. Focusing on the chronic sequelae of stroke that impair neuroplasticity highlights the need for continued investigative trials to better assess functional outcomes in treatments targeted for PSD.
Collapse
Affiliation(s)
- Vikalpa Dammavalam
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Deborah Rupert
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Marcos Lanio
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Neil Nadkarni
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Sergio D. Bergese
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| |
Collapse
|
3
|
Prajjwal P, Marsool MDM, Inban P, Sharma B, Asharaf S, Aleti S, Gadam S, Al Sakini AS, Hadi DD. Vascular dementia subtypes, pathophysiology, genetics, neuroimaging, biomarkers, and treatment updates along with its association with Alzheimer's dementia and diabetes mellitus. Dis Mon 2023; 69:101557. [PMID: 37031059 DOI: 10.1016/j.disamonth.2023.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Dementia is a chronic progressive cognitive decline illness that results in functional impairment. Vascular dementia (VaD), second only to Alzheimer's disease (AD), is one of the most prevalent forms of dementia in the elderly (aged over 65 years), with a varied presentation and unpredictable disease development caused by cerebrovascular or cardiovascular illness. To get a better understanding of the changes occurring in the brain and to drive therapy efforts, new biomarkers for early and precise diagnosis of AD and VaD are required. In this review, Firstly, we describe the subtypes of vascular dementia, their clinical features, pathogenesis, genetics implemented, and their associated neuroimaging and biomarkers, while describing extensively the recent biomarkers discovered in the literature. Secondly, we describe some of the well-documented and other less-defined risk factors and their association and pathophysiology in relation to vascular dementia. Finally, we follow recent updates in the management of vascular dementia along with its association and differentiation from Alzheimer's disease. The aim of this review is to gather the scattered updates and the most recent changes in blood, CSF, and neuroimaging biomarkers related to the multiple subtypes of vascular dementia along with its association with Alzheimer's dementia and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai, India
| | | | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | - Soumya Aleti
- PGY-2, Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | | | - Dalia Dhia Hadi
- University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
| |
Collapse
|
4
|
Droś J, Klimkowicz-Mrowiec A. Current view on post-stroke dementia. Psychogeriatrics 2021; 21:407-417. [PMID: 33608997 DOI: 10.1111/psyg.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Dementia is one of the leading complications after stroke affecting about one third of survivors. Prevalence of post-stroke dementia (PSD) differs between studies due to variability in methodology, characteristics of included patients, type of stroke, diagnostic tools used to identify patients with dementia, or time when the assessment was performed. Patients diagnosed with PSD are at higher risk of mortality, disability, and institutionalization. Aetiology of PSD may include mixed overlapping processes such as vascular brain pathology or Alzheimer's disease. Several risk factors have been found to increase PSD incidence, involving demographics, vascular factors, stroke characteristics, abnormalities on neuroimaging, and stroke complications. However, the influence of some other factors still remains unclear. PSD may coexist with other neuropsychiatric disorders and its association with post-stroke depression seems to be the most significant. There is a strong need for further research on possible genetic, biological, and inflammatory biomarkers. Also, there are no unambiguously efficacious methods of management. Continuing to address these issues will help to find more effective interventions directly targeting prevention and treatment of PSD in the future.
Collapse
Affiliation(s)
- Jakub Droś
- Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Azizi F, Askari S, Javadpour P, Hadjighassem M, Ghasemi R. Potential role of exosome in post-stroke reorganization and/or neurodegeneration. EXCLI JOURNAL 2020; 19:1590-1606. [PMID: 33408596 PMCID: PMC7783471 DOI: 10.17179/excli2020-3025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022]
Abstract
Currently, stroke is a common and devastating condition, which is sometimes associated with permanent cerebral damages. Although in early time after stroke, the related treatments are mainly focused on the restoration of cerebral blood flow (CBF), at the same time, some changes are commencing that continue for a long time and need to be specially noticed. Previous studies have proposed several molecular mechanisms in these post-stroke events. Exosomes are a type of vesicle, which are formed and secreted by most cells as a mean to transfer cellular constituents such as proteins, DNA and/or RNA to distant cells. Therefore, they are considered as a novel mechanism of cellular communication. Herein, we reviewed the current knowledge on cascades, which are activated after stroke and consequently lead to the reorganization and/or continuance of tissue damage and development of other disorders such as Neurodegenerative diseases (ND). Thereafter, we summarized the latest proofs about the possible participation of exosomes in transferring some components such as proteins and micro-RNAs (miRs), from the affected areas to other parts of the brain and eventually cause the above-mentioned post-stroke events.
Collapse
Affiliation(s)
- Fateme Azizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sequence Variation in the DDAH1 Gene Predisposes for Delayed Cerebral Ischemia in Subarachnoidal Hemorrhage. J Clin Med 2020; 9:jcm9123900. [PMID: 33271854 PMCID: PMC7761257 DOI: 10.3390/jcm9123900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
Delayed cerebral ischemia (DCI) often causes poor long-term neurological outcome after subarachnoidal hemorrhage (SAH). Asymmetric dimethylarginine (ADMA) inhibits nitric oxide synthase (NOS) and is associated with DCI after SAH. We studied single nucleotide polymorphisms (SNPs) in the NOS3, DDAH1, DDAH2, PRMT1, and AGXT2 genes that are part of the L-arginine–ADMA–NO pathway, and their association with DCI. We measured L-arginine, ADMA and symmetric dimethylarginine (SDMA) in plasma and cerebrospinal fluid (CSF) of 51 SAH patients at admission; follow-up was until 30 days post-discharge. The primary outcome was the incidence of DCI, defined as new infarctions on cranial computed tomography, which occurred in 18 of 51 patients. Clinical scores did not significantly differ in patients with or without DCI. However, DCI patients had higher plasma ADMA and SDMA levels and higher CSF SDMA levels at admission. DDAH1 SNPs were associated with plasma ADMA, whilst AGXT2 SNPs were associated with plasma SDMA. Carriers of the minor allele of DDAH1 rs233112 had a significantly increased relative risk of DCI (Relative Risk = 2.61 (1.25–5.43), p = 0.002). We conclude that the DDAH1 gene is associated with ADMA concentration and the incidence of DCI in SAH patients, suggesting a pathophysiological link between gene, biomarker, and clinical outcome in patients with SAH.
Collapse
|
7
|
Sarfo FS, Akinyemi R, Howard G, Howard VJ, Wahab K, Cushman M, Levine DA, Ogunniyi A, Unverzagt F, Owolabi M, Ovbiagele B. Vascular-brain Injury Progression after Stroke (VIPS) study: concept for understanding racial and geographic determinants of cognitive decline after stroke. J Neurol Sci 2020; 412:116754. [PMID: 32120131 PMCID: PMC9132491 DOI: 10.1016/j.jns.2020.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Cognitive impairment and dementia (CID) are major public health problems with substantial personal, social, and financial burdens. African Americans are at a heightened risk for Vascular Cognitive Impairment (VCI) compared to European Americans. Recent lines of evidence also suggest a high burden of Post-stroke VCI among indigenous Africans. A better understanding of the cause(s) of the racial disparity in CID, specifically VCI, is needed in order to develop strategies to reduce it. We propose and discuss the conceptual framework for a unique tri-population, trans-continental study titled The Vascular brain Injury Progression after Stroke (VIPS) study. The overarching objective of the VIPS Study will be to explore the interplay of multiple factors (racial, geographical, vascular, lifestyle, nutritional, psychosocial and inflammatory) influencing the level and trajectory of post-stroke cognitive outcomes and examine whether differences between indigenous Africans, African Americans and European Americans exist. We hypothesize that differences which might be due to racial factors will be observed in African Americans versus European Americans as well as Indigenous Africans versus European Americans but not in African Americans versus Indigenous Americans; differences due to geographical factors will be observed in Indigenous Americans versus African Americans and Indigenous Africans versus European Americans but not in African Americans versus European Americans. This overarching objective could be accomplished by building upon existing National Institutes of Health investments in the REasons for Geographical And Racial Differences in Stroke (REGARDS) study (based in the United States of America) and the Stroke Investigative Research and educational Network (SIREN) study (based in Sub-Saharan Africa).
Collapse
Affiliation(s)
- Fred Stephen Sarfo
- Department of Medicine, Neurology Division, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - George Howard
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kolawole Wahab
- Department of Medicine, University of Ilorin, Ilorin, Nigeria
| | - Mary Cushman
- Division of Hematology and Oncology, Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Deborah A Levine
- Department of Internal Medicine, University of Michigan (U-M) Medical School (UMMS), Ann Arbor, MI, USA
| | | | - Fred Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Bruce Ovbiagele
- Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
8
|
Genetic Factors of Nitric Oxide's System in Psychoneurologic Disorders. Int J Mol Sci 2020; 21:ijms21051604. [PMID: 32111088 PMCID: PMC7084194 DOI: 10.3390/ijms21051604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
According to the recent data, nitric oxide (NO) is a chemical messenger that mediates functions such as vasodilation and neurotransmission, as well as displaying antimicrobial and antitumoral activities. NO has been implicated in the neurotoxicity associated with stroke and neurodegenerative diseases; neural regulation of smooth muscle, including peristalsis; and penile erections. We searched for full-text English publications from the past 15 years in Pubmed and SNPedia databases using keywords and combined word searches (nitric oxide, single nucleotide variants, single nucleotide polymorphisms, genes). In addition, earlier publications of historical interest were included in the review. In our review, we have summarized information regarding all NOS1, NOS2, NOS3, and NOS1AP single nucleotide variants (SNVs) involved in the development of mental disorders and neurological diseases/conditions. The results of the studies we have discussed in this review are contradictory, which might be due to different designs of the studies, small sample sizes in some of them, and different social and geographical characteristics. However, the contribution of genetic and environmental factors has been understudied, which makes this issue increasingly important for researchers as the understanding of these mechanisms can support a search for new approaches to pathogenetic and disease-modifying treatment.
Collapse
|
9
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
10
|
Barnfield S, Pitts AC, Kalaria R, Allan L, Tullo E. "Is all the stuff about neurons necessary?" The development of lay summaries to disseminate findings from the Newcastle Cognitive Function after Stroke (COGFAST) study. RESEARCH INVOLVEMENT AND ENGAGEMENT 2017; 3:18. [PMID: 29062543 PMCID: PMC5611656 DOI: 10.1186/s40900-017-0066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/07/2017] [Indexed: 06/02/2023]
Abstract
PLAIN ENGLISH SUMMARY Why did we do this study? It can be difficult for scientists to communicate their research findings to the public. This is partly due to the complexity of translating scientific language into words that the public understand. Further, it may be hard for the public to find out about and locate information about research studies. We aimed to adapt some scientific articles about the links between dementia and stroke into lay summaries to be displayed online for the general public. How did we do it? We collaborated with five people from a volunteer organisation, VOICENorth. They took part in two group discussions about studies reporting on the link between dementia and stroke, and selected four studies to translate into lay summaries and display on a website. We discussed the layout and language of the summaries and made adaptations to make them more understandable to the general public. What did we find? We were able to work with members of the public to translate research findings into lay summaries suitable for a general audience. We made changes to language and layout including the use of 'question and answer' style layouts, the addition of a reference list of scientific terms, and removing certain words. What does this mean? Working with members of the public is a realistic way to create resources that improve the accessibility of research findings to the wider public. ABSTRACT Background Scientific research is often poorly understood by the general public and difficult for them to access. This presents a major barrier to disseminating and translating research findings. Stroke and dementia are both major public health issues, and research has shown lifestyle measures help to prevent them. This project aimed to select a series of studies from the Newcastle Cognitive Function after Stroke cohort (COGFAST) and create lay summaries comprehensible and accessible to the public. Methods We used a focus group format to collaborate with five members of the public to review COGFAST studies, prioritise those of most interest to the wider public, and modify the language and layout of the selected lay summaries. Focus groups were audio-taped and the team used the data to make iterative amendments, as suggested by members of the public, to the summaries and to a research website. We calculated the Flesch reading ease and Flesch-Kincaid grade level for each summary before and after the changes were made. Results In total, we worked with five members of the public in two focus groups to examine draft lay summaries, created by researchers, relating to eight COGFAST studies. Members of the public prioritised four COGFAST lay summaries according to the importance of the topic to the general public. We made a series of revisions to the summaries including the use of 'question and answer' style layouts, the addition of a glossary, and the exclusion of scientific jargon. Group discussion highlighted that lay summaries should be engaging, concise and comprehensible. We incorporated suggestions from members of the public into the design of a study website to display the summaries. The application of existing quantitative tools to estimate readability resulted in an apparently paradoxical increase in complexity of the lay summaries following the changes made. Conclusion This study supports previous literature demonstrating challenges in creating generic guidelines for researchers to create lay summaries. Existing quantitative metrics to assess readability may be inappropriate for assessing scientific lay summaries. We have shown it is feasible and successful to involve members of the public to create lay summaries to communicate the findings of complex scientific research. Trial registration Not applicable to the lay summary project.
Collapse
Affiliation(s)
- Sarah Barnfield
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alison Clara Pitts
- Newcastle upon Tyne Hospitals’ NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Raj Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Allan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Ellen Tullo
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Mijajlović MD, Pavlović A, Brainin M, Heiss WD, Quinn TJ, Ihle-Hansen HB, Hermann DM, Assayag EB, Richard E, Thiel A, Kliper E, Shin YI, Kim YH, Choi S, Jung S, Lee YB, Sinanović O, Levine DA, Schlesinger I, Mead G, Milošević V, Leys D, Hagberg G, Ursin MH, Teuschl Y, Prokopenko S, Mozheyko E, Bezdenezhnykh A, Matz K, Aleksić V, Muresanu D, Korczyn AD, Bornstein NM. Post-stroke dementia - a comprehensive review. BMC Med 2017; 15:11. [PMID: 28095900 PMCID: PMC5241961 DOI: 10.1186/s12916-017-0779-7] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Post-stroke dementia (PSD) or post-stroke cognitive impairment (PSCI) may affect up to one third of stroke survivors. Various definitions of PSCI and PSD have been described. We propose PSD as a label for any dementia following stroke in temporal relation. Various tools are available to screen and assess cognition, with few PSD-specific instruments. Choice will depend on purpose of assessment, with differing instruments needed for brief screening (e.g., Montreal Cognitive Assessment) or diagnostic formulation (e.g., NINDS VCI battery). A comprehensive evaluation should include assessment of pre-stroke cognition (e.g., using Informant Questionnaire for Cognitive Decline in the Elderly), mood (e.g., using Hospital Anxiety and Depression Scale), and functional consequences of cognitive impairments (e.g., using modified Rankin Scale). A large number of biomarkers for PSD, including indicators for genetic polymorphisms, biomarkers in the cerebrospinal fluid and in the serum, inflammatory mediators, and peripheral microRNA profiles have been proposed. Currently, no specific biomarkers have been proven to robustly discriminate vulnerable patients ('at risk brains') from those with better prognosis or to discriminate Alzheimer's disease dementia from PSD. Further, neuroimaging is an important diagnostic tool in PSD. The role of computerized tomography is limited to demonstrating type and location of the underlying primary lesion and indicating atrophy and severe white matter changes. Magnetic resonance imaging is the key neuroimaging modality and has high sensitivity and specificity for detecting pathological changes, including small vessel disease. Advanced multi-modal imaging includes diffusion tensor imaging for fiber tracking, by which changes in networks can be detected. Quantitative imaging of cerebral blood flow and metabolism by positron emission tomography can differentiate between vascular dementia and degenerative dementia and show the interaction between vascular and metabolic changes. Additionally, inflammatory changes after ischemia in the brain can be detected, which may play a role together with amyloid deposition in the development of PSD. Prevention of PSD can be achieved by prevention of stroke. As treatment strategies to inhibit the development and mitigate the course of PSD, lowering of blood pressure, statins, neuroprotective drugs, and anti-inflammatory agents have all been studied without convincing evidence of efficacy. Lifestyle interventions, physical activity, and cognitive training have been recently tested, but large controlled trials are still missing.
Collapse
Affiliation(s)
- Milija D Mijajlović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotica 6, 11000, Belgrade, Serbia.
| | - Aleksandra Pavlović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotica 6, 11000, Belgrade, Serbia
| | - Michael Brainin
- Department of Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | | | - Terence J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Hege B Ihle-Hansen
- Department of internal medicine, Oslo University Hospital, Ullevål and Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Bærum, Norway
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Einor Ben Assayag
- Stroke Unit, Department of Neurology, Tel-Aviv Sorasky Medical Center, Tel-Aviv, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Edo Richard
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, McGill University at SMBD Jewish General Hospital and Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Efrat Kliper
- Stroke Unit, Department of Neurology, Tel-Aviv Sorasky Medical Center, Tel-Aviv, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - SeongHye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | - San Jung
- Hallym University Medical Center, Kang Nam Sacred Heart Hospital, Seoul, South Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Osman Sinanović
- Department of Neurology, University Clinical Center Tuzla, School of Medicine University of Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - Deborah A Levine
- Department of Internal Medicine, University of Michigan and the VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Ilana Schlesinger
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
- Technion Faculty of Medicine, Haifa, Israel
| | - Gillian Mead
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vuk Milošević
- Clinic of Neurology, Clinical Center Nis, Nis, Serbia
| | - Didier Leys
- U1171-Department of Neurology, University of Lille, Inserm, Faculty of Medicine, Lille University Hospital, Lille, France
| | - Guri Hagberg
- Department of internal medicine, Oslo University Hospital, Ullevål and Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Bærum, Norway
| | - Marie Helene Ursin
- Department of internal medicine, Oslo University Hospital, Ullevål and Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Bærum, Norway
| | - Yvonne Teuschl
- Department of Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | - Semyon Prokopenko
- Department of Neurology and Medical Rehabilitation, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Krasnoyarsk, Russia
| | - Elena Mozheyko
- Department of Neurology and Medical Rehabilitation, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Krasnoyarsk, Russia
| | - Anna Bezdenezhnykh
- Department of Neurology and Medical Rehabilitation, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Krasnoyarsk, Russia
| | - Karl Matz
- Department of Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | - Vuk Aleksić
- Department of Neurosurgery, Clinical Hospital CenterZemun, Belgrade, Serbia
| | - DafinFior Muresanu
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine, Clij-Napoca, Romania
| | - Amos D Korczyn
- Department of Neurology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Natan M Bornstein
- Stroke Unit, Department of Neurology, Tel-Aviv Sorasky Medical Center, Tel-Aviv, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Manso-Calderón R, González-Sarmiento R. Genetic susceptibility to vascular cognitive impairment: a pathophysiological view. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl-2016-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneity of the vascular cognitive impairment (VCI) creates challenges for research on its genetic basis and pathophysiology. Despite well-known monogenic forms may be useful to understand some pathogenic mechanisms leading to VCI, most of VCIs are sporadic disorders resulting from the interaction between environmental, vascular and genetic factors. Genetic investigation for VCI may encompass both candidate genes that affect critical biological processes to VCI and common and rare genetic variants identified across the entire genome study technology, thereby enabling us to confirm or expose new biological mechanisms in VCI and develop new therapeutic and preventive approaches. Notwithstanding genetic susceptibility to VCI remains largely unknown owing to methodological issues. Collaborative efforts emerge as an interesting strategy to overcome these problems.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca-CSIC-SACYL, Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine & Institute of Molecular & Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|
13
|
Kapoor S. Close association between polymorphisms of the nitric oxide synthetase 3 gene and neurological disorders other than stroke. Int J Gen Med 2012; 5:431-2. [PMID: 22654522 PMCID: PMC3363344 DOI: 10.2147/ijgm.s31983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|