1
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
2
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
3
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
4
|
Murphy C, Johnson AP, Koenekoop RK, Seiple W, Overbury O. The Relationship Between Cognitive Status and Known Single Nucleotide Polymorphisms in Age-Related Macular Degeneration. Front Aging Neurosci 2020; 12:586691. [PMID: 33178008 PMCID: PMC7596199 DOI: 10.3389/fnagi.2020.586691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Recent literature has reported a higher occurrence of cognitive impairment among individuals with Age-related Macular Degeneration (AMD) compared to older adults with normal vision. This pilot study explored potential links between single nucleotide polymorphisms (SNPs) in AMD and cognitive status. Individuals with AMD (N = 21) and controls (N = 18) were genotyped for the SNPs CFHY402H, ARMS2A69S and FADS1 rs174547. Cognitive status was evaluated using the Montreal Cognitive Assessment. The two groups differed significantly on which subscales were most difficult. The control group had difficulty with delayed recall while those with AMD had difficulty on delayed recall in addition to abstraction and orientation. Homozygous carriers of the FADS1 rs174547 SNP had significantly lower scores than heterozygotes or non-carriers on the MoCA. The results suggest that the FADS1 SNP may play a role in visual impairment/cognitive impairment comorbidity as reflected in the poorer cognitive scores among homozygotes with AMD compared to those carrying only one, or no copies of the SNP.
Collapse
Affiliation(s)
- Caitlin Murphy
- Low Vision Lab, School of Optometry, University of Montreal, Montreal, QC, Canada
- Concordia Vision Labs, Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)/Centre de Réadaptation Lethbridge-Layton-Mackay du Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Ouest-de-l’Ile-de-Montréal (CIUSSS) du Centre-Ouest-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Aaron P. Johnson
- Concordia Vision Labs, Department of Psychology, Concordia University, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR)/Centre de Réadaptation Lethbridge-Layton-Mackay du Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Ouest-de-l’Ile-de-Montréal (CIUSSS) du Centre-Ouest-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Robert K. Koenekoop
- Paediatric Surgery and Human Genetics and Ophthalmology, Faculty of Medicine, McGill University Health Centre, Montreal QC, Canada
| | - William Seiple
- Arlene R. Gordon Research Institute, Lighthouse Guild, New York, NY, United States
- School of Medicine, New York University, New York, NY, United States
| | - Olga Overbury
- Low Vision Lab, School of Optometry, University of Montreal, Montreal, QC, Canada
- Lady Davis Institute of Medical Research, Montreal, QC, Canada
| |
Collapse
|
5
|
Choi SI, Lee B, Woo JH, Jeong JB, Jun I, Kim EK. APP processing and metabolism in corneal fibroblasts and epithelium as a potential biomarker for Alzheimer's disease. Exp Eye Res 2019; 182:167-174. [PMID: 30930125 DOI: 10.1016/j.exer.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/18/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) primarily affects the brain and is the most common form of dementia worldwide. Despite more than a century of research, there are still no early biomarkers for AD. It has been reported that AD affects the eye, which is more accessible for imaging than the brain; however, links with the cornea have not been evaluated. To investigate whether the cornea could be used to identify possible diagnostic indicators of AD, we analyzed the proteolytic processing and isoforms of amyloid precursor protein (APP) and evaluated the expression of AD-related genes and proteins in corneal fibroblasts from wild-type (WT) corneas and corneas from patients with granular corneal dystrophy type 2 (GCD2), which is related to amyloid formation in the cornea. Reverse transcription polymerase chain reaction (RT-PCR) analysis was used to assess the expression of AD-related genes, i.e., APP, ADAM10, BACE1, BACE2, PSEN1, NCSTN, IDE, and NEP. RT-PCR and DNA sequencing analysis demonstrated that isoforms of APP770 and APP751, but not APP695, were expressed in corneal fibroblasts. Moreover, the mRNA ratio of APP770/APP751 isoforms was approximately 4:1. Western blot analysis also demonstrated the expression of a disintegrin and metalloprotease domain-containing protein 10 (ADAM10), beta-site APP-cleaving enzyme 1 (BACE1), nicastrin, insulin degradation enzyme, and neprilysin in corneal fibroblasts. Among these targets, the levels of immature ADAM10 and BACE1 protein were significantly increased in GCD2 cells. The expression levels of APP, ADAM10, BACE1, and transforming growth factor-beta-induced protein (TGFBIp) were also detected by western blot in human corneal epithelium. We also investigated the effects of inhibition of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems (UPS) on APP processing and metabolism. These pathway inhibitors accumulated APP, α-carboxy-terminal fragments (CTFs), β-CTFs, and the C-terminal APP intracellular domain (AICD) in corneal fibroblasts. Analysis of microRNAs (miRNAs) revealed that miR-9 and miR-181a negatively coregulated BACE1 and TGFBIp, which was directly associated with the pathogenesis of AD and GCD2, respectively. Immunohistochemical analysis indicated that APP and BACE1 were distributed in corneal stroma cells, epithelial cells, and the retinal layer in mice. Collectively, we propose that the cornea, which is the transparent outermost layer of the eye and thus offers easy accessibility, could be used as a potential biomarker for AD diagnosis and progression.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Boram Lee
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hwan Woo
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jang Bin Jeong
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ikhyun Jun
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Alcalde-Cabero E, José García López F, Almazán-Isla J, Ruiz-Tovar M, Medrano MJ, Avellanal F, Calero O, Calero M. Drivers: A Biologically Contextualized, Cross-Inferential View of the Epidemiology of Neurodegenerative Disorders. J Alzheimers Dis 2016; 51:1003-22. [PMID: 26923014 PMCID: PMC4927850 DOI: 10.3233/jad-150884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Sutherland et al. (2011) suggested that, instead of risk factors for single neurodegenerative disorders (NDDs), there was a need to identify specific “drivers”, i.e., risk factors with impact on specific deposits, such as amyloid-β, tau, or α-synuclein, acting across entities. Objectives and Methods: Redefining drivers as “neither protein/gene- nor entity-specific features identifiable in the clinical and general epidemiology of conformational NDDs (CNDDs) as potential footprints of templating/spread/transfer mechanisms”, we conducted an analysis of the epidemiology of ten CNDDs, searching for patterns. Results: We identified seven potential drivers, each of which was shared by at least two CNDDs: 1) an age-at-exposure-related susceptibility to Creutzfeldt-Jakob disease (CJD) and several late-life CNDDs; 2) a relationship between age at onset, survival, and incidence; 3) shared genetic risk factors for CJD and late-life CNNDs; 4) partly shared personal (diagnostic, educational, behavioral, and social risk factors) predating clinical onset of late-life CNDDs; 5) two environmental risk factors, namely, surgery for sporadic CJD and amyotrophic lateral sclerosis, and Bordetella pertussis infection for Parkinson’s disease; 6) reticulo-endothelial system stressors or general drivers (andropause or premenopausal estrogen deficiency, APOEɛ4, and vascular risk factors) for late-life CNDDs such as dementia/Alzheimer’s disease, type-2 diabetes mellitus, and some sporadic cardiac and vascular degenerative diseases; and 7) a high, invariant incidence ratio of sporadic to genetic forms of mid- and late-life CNDDs, and type-2 diabetes mellitus. Conclusion: There might be a systematic epidemiologic pattern induced by specific proteins (PrP, TDP-43, SOD1, α-synuclein, amyloid-β, tau, Langerhans islet peptide, and transthyretin) or established combinations of these.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Fernando José García López
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Javier Almazán-Isla
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria-José Medrano
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Fuencisla Avellanal
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olga Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
7
|
Hernandez-Encinas E, Aguilar-Morante D, Morales-Garcia JA, Gine E, Sanz-SanCristobal M, Santos A, Perez-Castillo A. Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ. J Neuroinflammation 2016; 13:276. [PMID: 27769255 PMCID: PMC5073972 DOI: 10.1186/s12974-016-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells. Methods Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3. Results In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo. Conclusions Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Present Address: Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, 28040, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
8
|
Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell 2016; 163:1539-54. [PMID: 26638078 DOI: 10.1016/j.cell.2015.11.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 01/19/2023]
Abstract
Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.
Collapse
Affiliation(s)
| | | | | | - Elisa Zhang
- Department of Genetics, Stanford University, California 94305, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, Oregon 97403, USA
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, California 94305, USA
| | | | - David Willemsen
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Rongfeng Cui
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Itamar Harel
- Department of Genetics, Stanford University, California 94305, USA
| | - Ben E Machado
- Department of Genetics, Stanford University, California 94305, USA
| | - Muh-Ching Yee
- Department of Genetics, Stanford University, California 94305, USA
| | - Sabrina C Sharp
- Department of Genetics, Stanford University, California 94305, USA
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, 50931, Germany
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, Oregon 97403, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, California 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, California 94305, USA.
| |
Collapse
|
9
|
CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease. Neuropsychopharmacology 2016; 41:1034-45. [PMID: 26243271 PMCID: PMC4748428 DOI: 10.1038/npp.2015.232] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/08/2015] [Accepted: 07/18/2015] [Indexed: 02/05/2023]
Abstract
The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.
Collapse
|
10
|
Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol 2016; 94:113-21. [PMID: 26361248 DOI: 10.1111/aos.12825] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2015] [Indexed: 01/10/2023]
Abstract
Many eye diseases reduce visual acuity or are associated with visual field defects. Because of the well-defined retinotopic organization of the connections of the visual pathways, this may affect specific parts of the visual pathways and cortex, as a result of either deprivation or transsynaptic degeneration. For this reason, over the past several years, numerous structural magnetic resonance imaging (MRI) studies have examined the association of eye diseases with pathway and brain changes. Here, we review structural MRI studies performed in human patients with the eye diseases albinism, amblyopia, hereditary retinal dystrophies, age-related macular degeneration (AMD) and glaucoma. We focus on two main questions. First, what have these studies revealed? Second, what is the potential clinical relevance of their findings? We find that all the aforementioned eye diseases are indeed associated with structural changes in the visual pathways and brain. As such changes have been described in very different eye diseases, in our view the most parsimonious explanation is that these are caused by the loss of visual input and the subsequent deprivation of the visual pathways and brain regions, rather than by transsynaptic degeneration. Moreover, and of clinical relevance, for some of the diseases - in particular glaucoma and AMD - present results are compatible with the view that the eye disease is part of a more general neurological or neurodegenerative disorder that also affects the brain. Finally, establishing structural changes of the visual pathways has been relevant in the context of new therapeutic strategies to restore retinal function: it implies that restoring retinal function may not suffice to also effectively restore vision. Future structural MRI studies can contribute to (i) further establish relationships between ocular and neurological neurodegenerative disorders, (ii) investigate whether brain degeneration in eye diseases is reversible, (iii) evaluate the use of neuroprotective medication in ocular disease, (iv) determine optimal timing for retinal implant insertion and (v) establish structural MRI examination as a diagnostic tool in ophthalmology.
Collapse
Affiliation(s)
- Doety Prins
- Laboratory of Experimental Ophthalmology; University of Groningen; University Medical Center Groningen; Groningen the Netherlands
| | - Sandra Hanekamp
- Laboratory of Experimental Ophthalmology; University of Groningen; University Medical Center Groningen; Groningen the Netherlands
| | - Frans W. Cornelissen
- Laboratory of Experimental Ophthalmology; University of Groningen; University Medical Center Groningen; Groningen the Netherlands
| |
Collapse
|
11
|
Hu WT, Watts KD, Tailor P, Nguyen TP, Howell JC, Lee RC, Seyfried NT, Gearing M, Hales CM, Levey AI, Lah JJ, Lee EK. CSF complement 3 and factor H are staging biomarkers in Alzheimer's disease. Acta Neuropathol Commun 2016; 4:14. [PMID: 26887322 PMCID: PMC4758165 DOI: 10.1186/s40478-016-0277-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/06/2023] Open
Abstract
Introduction CSF levels of established Alzheimer’s disease (AD) biomarkers remain stable despite disease progression, and non-amyloid non-tau biomarkers have the potential of informing disease stage and progression. We previously identified complement 3 (C3) to be decreased in AD dementia, but this change was not found by others in earlier AD stages. We hypothesized that levels of C3 and associated factor H (FH) can potentially distinguish between mild cognitive impairment (MCI) and dementia stages of AD, but we also found their levels to be influenced by age and disease status. Results We developed a biochemical/bioinformatics pipeline to optimize the handling of complex interactions between variables in validating biochemical markers of disease. We used data from the Alzheimer’s Disease Neuro-imaging Initiative (ADNI, n = 230) to build parallel machine learning models, and objectively tested the models in a test cohort (n = 73) of MCI and mild AD patients independently recruited from Emory University. Whereas models incorporating age, gender, APOE ε4 status, and CSF amyloid and tau levels failed to reliably distinguish between MCI and mild AD in ADNI, introduction of CSF C3 and FH levels reproducibly improved the distinction between the two AD stages in ADNI (p < 0.05) and the Emory cohort (p = 0.014). Within each AD stage, the final model also distinguished between fast vs. slower decliners (p < 0.001 for MCI, p = 0.007 for mild AD), with lower C3 and FH levels associated with more advanced disease and faster progression. Conclusions We propose that CSF C3 and FH alterations may reflect stage-associated biomarker changes in AD, and can complement clinician diagnosis in diagnosing and staging AD using the publically available ADNI database as reference. Electronic supplementary material The online version of this article (doi:10.1186/s40478-016-0277-8) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Williams MA, McKay GJ, Carson R, Craig D, Silvestri G, Passmore P. Age-Related Macular Degeneration-Associated Genes in Alzheimer Disease. Am J Geriatr Psychiatry 2015; 23:1290-1296. [PMID: 26419733 DOI: 10.1016/j.jagp.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Given the clinical and pathological similarities between age-related macular degeneration (AMD) and Alzheimer disease (AD), to assess whether AMD-associated single nucleotide polymorphisms (SNPs), including those from complement-related genes, are associated with AD. DESIGN A case-control association study-type design. SETTING A UK tertiary care dementia clinic. PARTICIPANTS 322 cognitively normal participants and 258 cases with a clinical diagnosis of AD. MEASUREMENTS Polymorphisms in the following genes were studied: CFH, ARMS2, C2/CFB, C3, CFI/PLA2G12a, SERPING1, TLR3, TLR4, CRP, APOE, and TOMM40. Haplotypes were analysed for CFH, TOMM40, and APOE. Univariate analysis was performed for each genetic change and case-comparator status, and then correction for multiple testing performed. RESULTS The presence of an ε4 APOE allele was significantly associated with AD. No association was evident between CFH SNPs or haplotypes, or other AMD-associated SNPs tested, and AD. The exceptions were TOMM40 SNPs, which were associated with AD even after correction for multiple comparisons. The associations disappeared, however, when entered into a regression model including APOE genotypes. CONCLUSIONS The results for most SNPs tested, as well as CFH haplotypes, are novel. The functional effects of abnormal complement activity in AD's pathogenesis may be contradictory, but methodological reasons may underlie the lack of association-for example, genetic changes other than SNPs being involved.
Collapse
Affiliation(s)
| | - Gareth J McKay
- Centre for Public Health, Queen's University of Belfast, UK
| | - Robyn Carson
- Centre for Public Health, Queen's University of Belfast, UK
| | - David Craig
- Centre for Public Health, Queen's University of Belfast, UK
| | - Giuliana Silvestri
- Centre for Experimental Medicine (GS), Queen's University of Belfast, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University of Belfast, UK
| |
Collapse
|
13
|
Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, Dua P, Lukiw WJ. Beta-Amyloid Precursor Protein (βAPP) Processing in Alzheimer's Disease (AD) and Age-Related Macular Degeneration (AMD). Mol Neurobiol 2015; 52:533-44. [PMID: 25204496 PMCID: PMC4362880 DOI: 10.1007/s12035-014-8886-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/27/2014] [Indexed: 01/18/2023]
Abstract
Amyloid is a generic term for insoluble, often intensely hydrophobic, fibrous protein aggregates that arise from inappropriately folded versions of naturally-occurring polypeptides. The abnormal generation and accumulation of amyloid, often referred to as amyloidogenesis, has been associated with the immune and pro-inflammatory pathology of several progressive age-related diseases of the human central nervous system (CNS) including Alzheimer's disease (AD) and age-related macular degeneration (AMD). This 'research perspective' paper reviews some of the research history, biophysics, molecular-genetics and environmental factors concerning the contribution of amyloid beta (Aβ) peptides, derived from beta-amyloid precursor protein (βAPP), to AD and AMD that suggests an extensive similarity in immune and inflammatory degenerative mechanisms between these two CNS diseases.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Surjyadipta Bhattacharjee
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Brandon M. Jones
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - James M. Hill
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Pharmacology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
| | - Christian Clement
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans, New Orleans, LA 70126 USA
| | | | - Prerna Dua
- Department of Health Information Management, Louisiana State University, Ruston, LA 71272 USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Microbiology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA
- Department of Natural Sciences, Infectious Diseases, Experimental Therapeutics and Human Toxicology Lab, Southern University at New Orleans, New Orleans, LA 70126 USA
| |
Collapse
|
14
|
Hernandez-Encinas E, Aguilar-Morante D, Cortes-Canteli M, Morales-Garcia JA, Gine E, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β directly regulates the expression of the complement component 3 gene in neural cells: implications for the pro-inflammatory effects of this transcription factor. J Neuroinflammation 2015; 12:14. [PMID: 25617152 PMCID: PMC4348118 DOI: 10.1186/s12974-014-0223-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor, which was first identified as a regulator of differentiation and inflammatory processes mainly in adipose tissue and liver; however, its function in the brain was largely unknown for many years. Previous studies from our laboratory indicated that C/EBPβ is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. Methods We first performed cDNA microarrays analysis using hippocampal RNA isolated from C/EBPβ+/+ and C/EBPβ−/− mice. Immunocytochemical and immunohistochemical studies were done to evaluate C/EBPβ and C3 levels. Transient transfection experiments were made to analyze transcriptional regulation of C3 by C/EBPβ. To knockdown C/EBPβ and C3 expression, mouse astrocytes were infected with lentiviral particles expressing an shRNA specific for C/EBPβ or an siRNA specific for C3. Results Among the genes displaying significant changes in expression was complement component 3 (C3), which showed a dramatic decrease in mRNA content in the hippocampus of C/EBPβ−/− mice. C3 is the central component of the complement and is implicated in different brain disorders. In this work we have found that C/EBPβ regulates C3 levels in rodents glial in vitro and in the rat Substantia nigra pars compacta (SNpc) in vivo following an inflammatory insult. Analysis of the mouse C3 promoter showed that it is directly regulated by C/EBPβ through a C/EBPβ consensus site located at position −616/-599 of the gene. In addition, we show that depletion of C/EBPβ by a specific shRNA results in a significant decrease in the levels of C3 together with a reduction in the increased levels of pro-inflammatory agents elicited by lipopolysaccharide treatment. Conclusions Altogether, these results indicate that C3 is a downstream target of C/EBPβ, and it could be a mediator of the pro-inflammatory effects of this transcription factor in neural cells.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Marta Cortes-Canteli
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Present address: Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Elena Gine
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
15
|
At the interface of sensory and motor dysfunctions and Alzheimer's disease. Alzheimers Dement 2015; 11:70-98. [PMID: 25022540 PMCID: PMC4287457 DOI: 10.1016/j.jalz.2014.04.514] [Citation(s) in RCA: 416] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/13/2014] [Accepted: 04/09/2014] [Indexed: 11/21/2022]
Abstract
Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses.
Collapse
|
16
|
Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging 2014; 35:2013-20. [DOI: 10.1016/j.neurobiolaging.2014.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/21/2014] [Accepted: 03/11/2014] [Indexed: 01/20/2023]
|
17
|
Logue MW, Schu M, Vardarajan BN, Farrell J, Lunetta KL, Jun G, Baldwin CT, DeAngelis MM, Farrer LA. Search for age-related macular degeneration risk variants in Alzheimer disease genes and pathways. Neurobiol Aging 2014; 35:1510.e7-18. [PMID: 24439028 PMCID: PMC3961547 DOI: 10.1016/j.neurobiolaging.2013.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/22/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022]
Abstract
Several lines of inquiry point to overlapping molecular mechanisms between late-onset Alzheimer disease (AD) and age-related macular degeneration (AMD). We evaluated summarized results from large genome-wide association studies for AD and AMD to test the hypothesis that AD susceptibility loci are also associated with AMD. We observed association of both disorders with genes in a region of chromosome 7, including PILRA and ZCWPW1 (peak AMD SNP rs7792525, minor allele frequency [MAF] = 19%, odds ratio [OR] = 1.14, p = 2.34 × 10(-6)), and with ABCA7 (peak AMD SNP rs3752228, MAF = 0.054, OR = 1.22, p = 0.00012). Next, we evaluated association of AMD with genes in AD-related pathways identified by canonical pathway analysis of AD-associated genes. Significant associations were observed with multiple previously identified AMD risk loci and 2 novel genes: HGS (peak SNP rs8070488, MAF = 0.23, OR = 0.91, p = 7.52 × 10(-5)), which plays a role in the clathrin-mediated endocytosis signaling pathway, and TNF (peak SNP rs2071590, MAF = 0.34, OR = 0.89, p = 1.17 × 10(-5)), which is a member of the atherosclerosis signaling and the LXR/RXR activation pathways. Our results suggest that AMD and AD share genetic mechanisms.
Collapse
Affiliation(s)
- Mark W. Logue
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - Matthew Schu
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - Badri N. Vardarajan
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - John Farrell
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - Gyungah Jun
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | - Clinton T. Baldwin
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA
| | | | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, 02118, USA.,Corresponding Author: Dr. Lindsay A. Farrer, Boston University School of Medicine, Biomedical Genetics L320, 72 East Concord Street, Boston, MA 02118, Tel: (617) 638-5393, Fax: (617) 638-4275,
| |
Collapse
|
18
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|
19
|
Sparrow JR, Ueda K, Zhou J. Complement dysregulation in AMD: RPE-Bruch's membrane-choroid. Mol Aspects Med 2012; 33:436-45. [PMID: 22504022 DOI: 10.1016/j.mam.2012.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 01/01/2023]
Abstract
The question as to why the macula of the retina is prone to an aging disease (age-related macular degeneration) remains unanswered. This unmet challenge has implications since AMD accounts for approximately 54% of blindness in the USA (Swaroop, Chew, Bowes Rickman and Abecasis, 2009). While AMD has onset in the elder years, it likely develops over time. Genetic discovery to date has accounted for approximately 50% of the inheritable component of AMD. The polymorphism that has been most widely studied is the Y402H allele in the complement factor H gene. The implication of this genetic association is that in a subset of AMD cases, unregulated complement activation is permissive for AMD. Given that this gene variant results in an amino acid substitution, it is assumed that this change will have functional consequences although the precise mechanisms are still unknown. Genetic predisposition is not the only factor however, since in this complex disease there is substantial evidence that lifestyle factors such as diet and smoking contribute to risk. Here we provide an overview of current knowledge with respect to factors involved in AMD pathogenesis. Interwoven with these issues is a discussion of the significant role played by aging processes, some of which are unique to the retina and retinal pigment epithelium. One recurring theme is the potential for disease promotion by diverse types of oxidation products.
Collapse
Affiliation(s)
- Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
20
|
Complement activation as a biomarker for Alzheimer's disease. Immunobiology 2011; 217:204-15. [PMID: 21856034 DOI: 10.1016/j.imbio.2011.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/22/2011] [Accepted: 07/18/2011] [Indexed: 01/31/2023]
Abstract
There is increasing evidence from genetic, immunohistochemical, proteomic and epidemiological studies as well as in model systems that complement activation has an important role in the pathogenesis of Alzheimer's disease (AD). The complement cascade is an essential element of the innate immune response. In the brain complement proteins are integral components of amyloid plaques and complement activation occurs at the earliest stage of the disease. The complement cascade has been implicated as a protective mechanism in the clearance of amyloid, and in a causal role through chronic activation of the inflammatory response. In this review we discuss the potential for complement activation to act as a biomarker for AD at several stages in the disease process. An accurate biomarker that has sufficient predictive, diagnostic and prognostic value would provide a significant opportunity to develop and test for effective novel therapies in the treatment of AD.
Collapse
|