1
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 PMCID: PMC12024007 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
2
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
3
|
Koch C, Baeuchl C, Glöckner F, Riedel P, Petzold J, Smolka MN, Li SC, Schuck NW. L-DOPA enhances neural direction signals in younger and older adults. Neuroimage 2022; 264:119670. [PMID: 36243268 PMCID: PMC9771830 DOI: 10.1016/j.neuroimage.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany.
| | - Christian Baeuchl
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Hsu JH, Tan CH, Yu RL. Impact of catechol-O-methyltransferase genetic polymorphisms and age on empathy. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Cortical D1 and D2 dopamine receptor availability modulate methylphenidate-induced changes in brain activity and functional connectivity. Commun Biol 2022; 5:514. [PMID: 35637272 PMCID: PMC9151821 DOI: 10.1038/s42003-022-03434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Dopamine signaling plays a critical role in shaping brain functional network organization and behavior. Prominent theories suggest the relative expression of D1- to D2-like dopamine receptors shapes excitatory versus inhibitory signaling, with broad consequences for cognition. Yet it remains unknown how the balance between cortical D1R versus D2R signaling coordinates the activity and connectivity of functional networks in the human brain. To address this, we collected three PET scans and two fMRI scans in 36 healthy adults (13 female/23 male; average age 43 ± 12 years), including a baseline D1R PET scan and two sets of D2R PET scans and fMRI scans following administration of either 60 mg oral methylphenidate or placebo (two separate days, blinded, order counterbalanced). The drug challenge allowed us to assess how pharmacologically boosting dopamine levels alters network organization and behavior in association with D1R-D2R ratios across the brain. We found that the relative D1R-D2R ratio was significantly greater in high-level association cortices than in sensorimotor cortices. After stimulation with methylphenidate compared to placebo, brain activity (as indexed by the fractional amplitude of low frequency fluctuations) increased in association cortices and decreased in sensorimotor cortices. Further, within-network resting state functional connectivity strength decreased more in sensorimotor than association cortices following methylphenidate. Finally, in association but not sensorimotor cortices, the relative D1R-D2R ratio (but not the relative availability of D1R or D2R alone) was positively correlated with spatial working memory performance, and negatively correlated with age. Together, these data provide a framework for how dopamine-boosting drugs like methylphenidate alter brain function, whereby regions with relatively higher inhibitory D2R (i.e., sensorimotor cortices) tend to have greater decreases in brain activity and connectivity compared to regions with relatively higher excitatory D1R (i.e., association cortices). They also support the importance of a balanced interaction between D1R and D2R in association cortices for cognitive function and its degradation with aging. Joint PET and MRI analyses of cortical D1 and D2 dopamine receptors in healthy adults provide a framework for understanding how dopamine-boosting drugs alter brain function.
Collapse
|
6
|
Jakobson Mo S, Axelsson J, Stiernman LJ, Larsson A, Af Bjerkén S, Bäckström D, Kellgren TG, Varrone A, Riklund K. VNTR polymorphism in the SLC6A3 gene does not influence dopamine transporter availability measured by [18F]FE-PE2I PET or [123I]FP-Cit SPECT. Nucl Med Commun 2022; 43:247-255. [PMID: 34908018 DOI: 10.1097/mnm.0000000000001514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the potential impact of polymorphism in the 3'-untranslated region (3'UTR) of the SLC6A3 gene (DAT1) on normal variation in dopamine transporter (DAT) imaging with [18F]FE-PE2I PET and [123I]FP-Cit SPECT. METHODS Thirty-six individuals (mean age 70.4±5.4 years) with normal [18F]FE-PE2I PET and [123I]FP-Cit SPECT were genotyped for variable number of tandem repeats (VNTR) in the 3'UTR of the DAT1 gene. The DAT-availability in the caudate and putamen as measured with [18F]FE-PE2I PET and [123I]FP-Cit SPECT, as well as in the substantia nigra with [18F]FE-PE2I PET were compared between the participants carrying one or two 9-repeat alleles (i.e. 9R+10R or 9R+9R; 47%) and the participants without a 9R allele (i.e. 10R+10R or 10R+11R; 53%). Nonparametric tests, linear regression analysis and mixed model analysis were used to assess any statistical difference in measured DAT availability between the two allele groups. RESULTS The measured DAT-availability in PET- and SPECT-imaging tended to be slightly higher in the 9R-group; however, the difference did not reach statistical significance in either the caudate or the putamen or the substantia nigra. Instead, age did have a significant effect on the DAT level (P < 0.05) notwithstanding the genotype. CONCLUSION No significant effect of DAT1-genotype was detectable in imaging with [18F]FE-PE2I PET or [123I]FP-Cit, instead, age accounted for the normal variation in DAT-PET and DAT-SPECT.
Collapse
Affiliation(s)
- Susanna Jakobson Mo
- Department of Radiation Sciences, Diagnostic Radiology
- Umeå Centre for Functional Brain Imaging (UFBI)
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics
| | - Lars J Stiernman
- Umeå Centre for Functional Brain Imaging (UFBI)
- Department of Integrative Medical Biology
| | - Anne Larsson
- Department of Radiation Sciences, Radiation Physics
| | - Sara Af Bjerkén
- Department of Integrative Medical Biology
- Department of Clinical Science, Neurosciences
| | | | | | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology
- Umeå Centre for Functional Brain Imaging (UFBI)
| |
Collapse
|
7
|
Papenberg G, Karalija N, Salami A, Rieckmann A, Andersson M, Axelsson J, Riklund K, Lindenberger U, Lövdén M, Nyberg L, Bäckman L. Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning. Cereb Cortex 2021; 30:989-1000. [PMID: 31504282 DOI: 10.1093/cercor/bhz142] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany and UK-WC1B 5EH London, UK
| | - Martin Lövdén
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, S-17177 Stockholm, Sweden
| |
Collapse
|
8
|
Ruel A, Devine S, Eppinger B. Resource‐rational approach to meta‐control problems across the lifespan. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1556. [DOI: 10.1002/wcs.1556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Alexa Ruel
- Department of Psychology Concordia University Montreal Quebec Canada
| | - Sean Devine
- Department of Psychology McGill University Montreal Quebec Canada
| | - Ben Eppinger
- Department of Psychology Concordia University Montreal Quebec Canada
- Faculty of Psychology Technische Universität Dresden Dresden Germany
- PERFORM Center Concordia University Montreal Quebec Canada
| |
Collapse
|
9
|
Leukel C, Schümann D, Kalisch R, Sommer T, Bunzeck N. Dopamine Related Genes Differentially Affect Declarative Long-Term Memory in Healthy Humans. Front Behav Neurosci 2020; 14:539725. [PMID: 33328916 PMCID: PMC7673390 DOI: 10.3389/fnbeh.2020.539725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022] Open
Abstract
In humans, monetary reward can promote behavioral performance including response times, accuracy, and subsequent recognition memory. Recent studies have shown that the dopaminergic system plays an essential role here, but the link to interindividual differences remains unclear. To further investigate this issue, we focused on previously described polymorphisms of genes affecting dopaminergic neurotransmission: DAT1 40 base pair (bp), DAT1 30 bp, DRD4 48 bp, and cannabinoid receptor type 1 (CNR1). Specifically, 669 healthy humans participated in a delayed recognition memory paradigm on two consecutive days. On the first day, male vs. female faces served as cues predicting an immediate monetary reward upon correct button presses. Subsequently, participants performed a remember/know recognition memory task on the same day and 1 day later. As predicted, reward increased accuracy and accelerated response times, which were modulated by DAT 30 bp. However, reward did not promote subsequent recognition memory performance and there was no interaction with any genotype tested here. Importantly, there were differential effects of genotype on declarative long-term memory independent of reward: (a) DAT1 40 bp was linked to the quality of memory with a more pronounced difference between recollection and familiarity in the heterozygous and homozygous 10-R as compared to homozygous 9-R; (b) DAT1 30 bp was linked to memory decay, which was most pronounced in homozygous 4-R; (c) DRD4 48 bp was linked to overall recognition memory with higher performance in the short allele group; and (d) CNR1 was linked to overall memory with reduced performance in the homozygous short group. These findings give new insights into how polymorphisms, which are related to dopaminergic neuromodulation, differentially affect long-term recognition memory performance.
Collapse
Affiliation(s)
- Carla Leukel
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Dirk Schümann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raffael Kalisch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Neuroimaging Center (NIC), Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Turner MP, Fischer H, Sivakolundu DK, Hubbard NA, Zhao Y, Rypma B, Bäckman L. Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performance. Neuroimage 2020; 206:116232. [PMID: 31593794 DOI: 10.1016/j.neuroimage.2019.116232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Facial recognition ability declines in adult aging, but the neural basis for this decline remains unknown. Cortical areas involved in face recognition exhibit lower dopamine (DA) receptor availability and lower blood-oxygen-level-dependent (BOLD) signal during task performance with advancing adult age. We hypothesized that changes in the relationship between these two neural systems are related to age differences in face-recognition ability. To test this hypothesis, we leveraged positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to measure D1 receptor binding potential (BPND) and BOLD signal during face-recognition performance. Twenty younger and 20 older participants performed a face-recognition task during fMRI scanning. Face recognition accuracy was lower in older than in younger adults, as were D1 BPND and BOLD signal across the brain. Using linear regression, significant relationships between DA and BOLD were found in both age-groups in face-processing regions. Interestingly, although the relationship was positive in younger adults, it was negative in older adults (i.e., as D1 BPND decreased, BOLD signal increased). Ratios of BOLD:D1 BPND were calculated and relationships to face-recognition performance were tested. Multiple linear regression revealed a significant Group × BOLD:D1 BPND Ratio interaction. These results suggest that, in the healthy system, synchrony between neurotransmitter (DA) and hemodynamic (BOLD) systems optimizes the level of BOLD activation evoked for a given DA input (i.e., the gain parameter of the DA input-neural activation function), facilitating task performance. In the aged system, however, desynchronization between these brain systems would reduce the gain parameter of this function, adversely impacting task performance and contributing to reduced face recognition in older adults.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Salami A, Rieckmann A, Karalija N, Avelar-Pereira B, Andersson M, Wåhlin A, Papenberg G, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Neurocognitive Profiles of Older Adults with Working-Memory Dysfunction. Cereb Cortex 2019; 28:2525-2539. [PMID: 29901790 PMCID: PMC5998950 DOI: 10.1093/cercor/bhy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
Individuals differ in how they perceive, remember, and think. There is evidence for the existence of distinct subgroups that differ in cognitive performance within the older population. However, it is less clear how individual differences in cognition in old age are linked to differences in brain-based measures. We used latent-profile analysis on n-back working-memory (WM) performance to identify subgroups in a large sample of older adults (n = 181; age = 64–68 years). Our analysis identified one larger normal subgroup with higher performance (n = 113; 63%), and a second smaller subgroup (n = 55; 31%) with lower performance. The low-performing subgroup showed weaker load-dependent BOLD modulation and lower connectivity within the fronto-parietal network (FPN) as well as between FPN and striatum during n-back, along with lower FPN connectivity at rest. This group also exhibited lower FPN structural integrity, lower frontal dopamine D2 binding potential, inferior performance on offline WM tests, and a trend-level genetic predisposition for lower dopamine-system efficiency. By contrast, this group exhibited relatively intact episodic memory and associated brain measures (i.e., hippocampal volume, structural, and functional connectivity within the default-mode network). Collectively, these data provide converging evidence for the existence of a group of older adults with impaired WM functioning characterized by reduced cortico-striatal coupling and aberrant cortico-cortical integrity within FPN.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Fallon SJ, Kienast A, Muhammed K, Ang YS, Manohar SG, Husain M. Dopamine D2 receptor stimulation modulates the balance between ignoring and updating according to baseline working memory ability. J Psychopharmacol 2019; 33:1254-1263. [PMID: 31526206 DOI: 10.1177/0269881119872190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Working memory (WM) deficits in neuropsychiatric disorders have often been attributed to altered dopaminergic signalling. Specifically, D2 receptor stimulation is thought to affect the ease with which items can be gated into and out of WM. In addition, this effect has been hypothesised to vary according to baseline WM ability, a putative index of dopamine synthesis levels. Moreover, whether D2 stimulation affects WM vicariously through modulating relatively WM-free cognitive control processes has not been explored. AIMS We examined the effect of administering a dopamine agonist on the ability to ignore or update information in WM. METHOD A single dose of cabergoline (1 mg) was administered to healthy older adult humans in a within-subject, double-blind, placebo-controlled study. In addition, we obtained measures of baseline WM ability and relatively WM-free cognitive control (overcoming response conflict). RESULTS Consistent with predictions, baseline WM ability significantly modulated the effect that drug administration had on the proficiency of ignoring and updating. High-WM individuals were relatively better at ignoring compared to updating after drug administration. Whereas the opposite occurred in low-WM individuals. Although the ability to overcome response conflict was not affected by cabergoline, a negative relationship between the effect the drug had on response conflict performance and ignoring was observed. Thus, both response conflict and ignoring are coupled to dopaminergic stimulation levels. CONCLUSIONS Cumulatively, these results provide evidence that dopamine affects subcomponents of cognitive control in a diverse, antagonistic fashion and that the direction of these effects is dependent upon baseline WM.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Kinan Muhammed
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yuen-Siang Ang
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Ding X, Barban N, Tropf FC, Mills MC. The relationship between cognitive decline and a genetic predictor of educational attainment. Soc Sci Med 2019; 239:112549. [PMID: 31546143 PMCID: PMC6873779 DOI: 10.1016/j.socscimed.2019.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Genetic and environmental factors both make substantial contributions to the heterogeneity in individuals' levels of cognitive ability. Many studies have examined the relationship between educational attainment and cognitive performance and its rate of change. Yet there remains a gap in knowledge regarding whether the effect of genetic predictors on individual differences in cognition becomes more or less prominent over the life course. In this analysis of over 5000 older adults from the Health and Retirement Study (HRS) in the U.S., we measured the change in performance on global cognition, episodic memory, attention & concentration, and mental status over 14 years. Growth curve models are used to evaluate the association between a polygenic risk score for education (education PGS) and cognitive change. Using the most recent education PGS, we find that individuals with higher scores perform better across all measures of cognition in later life. Education PGS is associated with a faster decline in episodic memory in old age. The relationships are robust even after controlling for phenotypic educational attainment, and are unlikely to be driven by mortality bias. Future research should consider genetic effects when examining non-genetic factors in cognitive decline. Our findings represent a need to understand the mechanisms between genetic endowment of educational attainment and cognitive decline from a biological angle.
Collapse
Affiliation(s)
- Xuejie Ding
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK.
| | - Nicola Barban
- Institute for Social and Economic Research (ISER), University of Essex, UK
| | - Felix C Tropf
- Center for Research in economics an Statistics (CREST), École Nationale de la Statistique et de L'administration Économique (ENSAE), France
| | - Melinda C Mills
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK; Leverhulme Centre for Demographic Science, University of Oxford, UK
| |
Collapse
|
15
|
Baeuchl C, Chen HY, Su YS, Hämmerer D, Klados MA, Li SC. Interactive effects of dopamine transporter genotype and aging on resting-state functional networks. PLoS One 2019; 14:e0215849. [PMID: 31067250 PMCID: PMC6505745 DOI: 10.1371/journal.pone.0215849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Abstract
Aging and dopamine modulation have both been independently shown to influence the functional connectivity of brain networks during rest. Dopamine modulation is known to decline during the course of aging. Previous evidence also shows that the dopamine transporter gene (DAT1) influences the re-uptake of dopamine and the anyA9 genotype of this gene is associated with higher striatal dopamine signaling. Expanding these two lines of prior research, we investigated potential interactive effects between aging and individual variations in the DAT1 gene on the modular organization of brain acvitiy during rest. The graph-theoretic metrics of modularity, betweenness centrality and participation coefficient were assessed in 41 younger (age 20–30 years) and 37 older (age 60–75 years) adults. Age differences were only observed in the participation coefficient in carriers of the anyA9 genotype of the DAT1 gene and this effect was most prominently observed in the default mode network. Furthermore, we found that individual differences in the values of the participation coefficient correlated with individual differences in fluid intelligence and a measure of executive control in the anyA9 carriers. The correlation between participation coefficient and fluid intelligence was mainly shared with age-related differences, whereas the correlation with executive control was independent of age. These findings suggest that DAT1 genotype moderates age differences in the functional integration of brain networks as well as the relation between network characteristics and cognitive abilities.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- * E-mail: (CB); (SCL)
| | - Hsiang-Yu Chen
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Yu-Shiang Su
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Dorothea Hämmerer
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Institute for Cognitive Neurology and Neurodegenerative Diseases, Otto-von-Guericke Universitaet, Magdeburg, Germany
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Manousos A. Klados
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Engineering, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- * E-mail: (CB); (SCL)
| |
Collapse
|
16
|
Karalija N, Papenberg G, Wåhlin A, Johansson J, Andersson M, Axelsson J, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. C957T-mediated Variation in Ligand Affinity Affects the Association between 11C-raclopride Binding Potential and Cognition. J Cogn Neurosci 2019; 31:314-325. [DOI: 10.1162/jocn_a_01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with 11C-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64–68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of 11C-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that 11C-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between 11C-raclopride BP and cognitive performance. In accordance with previous findings, we show that 11C-raclopride BP was increased in T-homozygotes. Importantly, 11C-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest 11C-raclopride BP–cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and 11C-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ulman Lindenberger
- Max Planck Institute for Human Development
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research
| | | | | |
Collapse
|
17
|
Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional Dopamine Uptake and Antipsychotic Treatment-Resistant Schizophrenia. Front Psychiatry 2019; 10:314. [PMID: 31214054 PMCID: PMC6557273 DOI: 10.3389/fpsyt.2019.00314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, yet the underlying neurobiological causes are unknown. All effective antipsychotic medications are thought to achieve their efficacy by targeting the dopaminergic system. Here we review early literature describing the fundamental mechanisms of antipsychotic drug efficacy, highlighting mechanistic concepts that have persisted over time. We then reconsider the original framework for understanding antipsychotic efficacy in light of recent advances in our scientific understanding of the dopaminergic effects of antipsychotics. Based on these new insights, we describe a role for the dopamine transporter in the genesis of both antipsychotic therapeutic response and primary resistance. We believe that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andreas Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
18
|
Bäckström D, Eriksson Domellöf M, Granåsen G, Linder J, Mayans S, Elgh E, Zetterberg H, Blennow K, Forsgren L. Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson's disease. Acta Neurol Scand 2018; 137:91-98. [PMID: 28869277 PMCID: PMC5763317 DOI: 10.1111/ane.12812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Cognitive decline is common in Parkinson's disease (PD), but the underlying mechanisms for this complication are incompletely understood. Genotypes affecting dopamine transmission may be of importance. This study investigates whether genotypes associated with reduced prefrontal dopaminergic tone and/or reduced dopamine D2-receptor availability (Catechol-O-methyltransferase [COMT] Val158 Met genotype and DRD2 C957 T genotype) affect the development of cognitive deficits in PD. MATERIALS AND METHODS One hundred and 34 patients with idiopathic PD, participating in a regional, population-based study of incident parkinsonism, underwent genotyping. After extensive baseline investigations (including imaging and biomarker analyses), the patients were followed prospectively during 6-10 years with neuropsychological evaluations, covering six cognitive domains. Cognitive decline (defined as the incidence of either Parkinson's disease mild cognitive impairment [PD-MCI] or dementia [PDD], diagnosed according to published criteria and blinded to genotype) was studied as the primary outcome. RESULTS Both genotypes affected cognition, as shown by Cox proportional hazards models. While the COMT 158 Val/Val genotype conferred an increased risk of mild cognitive impairment in patients with normal cognition at baseline (hazard ratio: 2.13, P = .023), the DRD2 957 T/T genotype conferred an overall increased risk of PD dementia (hazard ratio: 3.22, P < .001). The poorer cognitive performance in DRD2 957 T/T carriers with PD occurred mainly in episodic memory and attention. CONCLUSIONS The results favor the hypothesis that dopamine deficiency in PD not only relate to mild cognitive deficits in frontostriatal functions, but also to a decline in memory and attention. This could indicate that dopamine deficiency impairs a wide network of brain areas.
Collapse
Affiliation(s)
- D. Bäckström
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| | | | - G. Granåsen
- Epidemiology and Global Health UnitDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - J. Linder
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| | - S. Mayans
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
| | - E. Elgh
- Department of PsychologyUmeå UniversityUmeåSweden
| | - H. Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Molecular NeuroscienceUniversity College London Institute of NeurologyQueen SquareLondonEngland
| | - K. Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Forsgren
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| |
Collapse
|
19
|
Medrano P, Nyhus E, Smolen A, Curran T, Ross RS. Individual differences in EEG correlates of recognition memory due to DAT polymorphisms. Brain Behav 2017; 7:e00870. [PMID: 29299388 PMCID: PMC5745248 DOI: 10.1002/brb3.870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/09/2017] [Accepted: 10/01/2017] [Indexed: 11/09/2022] Open
Abstract
Introduction Although previous research suggests that genetic variation in dopaminergic genes may affect recognition memory, the role dopamine transporter expression may have on the behavioral and EEG correlates of recognition memory has not been well established. Objectives The study aims to reveal how individual differences in dopaminergic functioning due to genetic variations in the dopamine transporter gene influences behavioral and EEG correlates of recognition memory. Methods Fifty-eight participants performed an item recognition task. Participants were asked to retrieve 200 previously presented words while brain activity was recorded with EEG. Regions of interest were established in scalp locations associated with recognition memory. Mean ERP amplitudes and event-related spectral perturbations when correctly remembering old items (hits) and recognizing new items (correct rejections) were compared as a function of dopamine transporter group. Results Participants in the dopamine transporter group that codes for increased dopamine transporter expression (10/10 homozygotes) display slower reaction times compared to participants in the dopamine transporter group associated with the expression of fewer dopamine transporters (9R-carriers). 10/10 homozygotes further displayed differences in ERP and oscillatory activity compared to 9R-carriers. 10/10 homozygotes fail to display the left parietal old/new effect, an ERP signature of recognition memory associated with the amount of information retrieved. 10/10 homozygotes also displayed greater decreases of alpha and beta oscillatory activity during item memory retrieval compared to 9R-carriers. Conclusion Compared to 9R-carriers, 10/10 homozygotes display slower hit and correct rejection reaction times, an absence of the left parietal old/new effect, and greater decreases in alpha and beta oscillatory activity during recognition memory. These results suggest that dopamine transporter polymorphisms influence recognition memory.
Collapse
Affiliation(s)
- Paolo Medrano
- Psychology DepartmentUniversity of New HampshireDurhamNHUSA
| | - Erika Nyhus
- Department of Psychology and Program in NeuroscienceBowdoin CollegeBrunswickMEUSA
| | - Andrew Smolen
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderCOUSA
| | - Tim Curran
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderCOUSA
| | - Robert S. Ross
- Psychology DepartmentUniversity of New HampshireDurhamNHUSA
- Neuroscience and Behavior ProgramUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
20
|
Seidler RD, Carson RG. Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences. J Neuroeng Rehabil 2017; 14:74. [PMID: 28705227 PMCID: PMC5508480 DOI: 10.1186/s12984-017-0279-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
Here we provide an overview of findings and viewpoints on the mechanisms of sensorimotor learning presented at the 2016 Biomechanics and Neural Control of Movement (BANCOM) conference in Deer Creek, OH. This field has shown substantial growth in the past couple of decades. For example it is now well accepted that neural systems outside of primary motor pathways play a role in learning. Frontoparietal and anterior cingulate networks contribute to sensorimotor adaptation, reflecting strategic aspects of exploration and learning. Longer term training results in functional and morphological changes in primary motor and somatosensory cortices. Interestingly, re-engagement of strategic processes once a skill has become well learned may disrupt performance. Efforts to predict individual differences in learning rate have enhanced our understanding of the neural, behavioral, and genetic factors underlying skilled human performance. Access to genomic analyses has dramatically increased over the past several years. This has enhanced our understanding of cellular processes underlying the expression of human behavior, including involvement of various neurotransmitters, receptors, and enzymes. Surprisingly our field has been slow to adopt such approaches in studying neural control, although this work does require much larger sample sizes than are typically used to investigate skill learning. We advocate that individual differences approaches can lead to new insights into human sensorimotor performance. Moreover, a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies, which stand to be more effective than “one size fits all” treatments.
Collapse
Affiliation(s)
- R D Seidler
- University of Florida, P.O. Box 118205, Gainesville, FL, 32611-8205, USA.
| | - R G Carson
- Trinity College Dublin, Dublin, Ireland.,Queen's University Belfast, Belfast, Ireland
| |
Collapse
|
21
|
Dopamine and memory dedifferentiation in aging. Neuroimage 2017; 153:211-220. [PMID: 25800211 PMCID: PMC5460975 DOI: 10.1016/j.neuroimage.2015.03.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 02/02/2023] Open
Abstract
The dedifferentiation theory of aging proposes that a reduction in the specificity of neural representations causes declines in complex cognition as people get older, and may reflect a reduction in dopaminergic signaling. The present pharmacological fMRI study investigated episodic memory-related dedifferentiation in young and older adults, and its relation to dopaminergic function, using a randomized placebo-controlled double-blind crossover design with the agonist Bromocriptine (1.25mg) and the antagonist Sulpiride (400mg). We used multi-voxel pattern analysis to measure memory specificity: the degree to which distributed patterns of activity distinguishing two different task contexts during an encoding phase are reinstated during memory retrieval. As predicted, memory specificity was reduced in older adults in prefrontal cortex and in hippocampus, consistent with an impact of neural dedifferentiation on episodic memory representations. There was also a linear age-dependent dopaminergic modulation of memory specificity in hippocampus reflecting a relative boost to memory specificity on Bromocriptine in older adults whose memory was poorer at baseline, and a relative boost on Sulpiride in older better performers, compared to the young. This differed from generalized effects of both agents on task specificity in the encoding phase. The results demonstrate a link between aging, dopaminergic function and dedifferentiation in the hippocampus.
Collapse
|
22
|
Klaus K, Butler K, Durrant SJ, Ali M, Inglehearn CF, Hodgson TL, Gutierrez H, Pennington K. The effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress. Brain Behav 2017; 7:e00695. [PMID: 28523234 PMCID: PMC5434197 DOI: 10.1002/brb3.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Previous research has indicated that variation in genes encoding catechol-O-methyltransferase (COMT) and dopamine receptor D2 (DRD2) may influence cognitive function and that this may confer vulnerability to the development of mental health disorders such as schizophrenia. However, increasing evidence suggests environmental factors such as early life stress may interact with genetic variants in affecting these cognitive outcomes. This study investigated the effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress in healthy adults. METHODS One hundred and twenty-two healthy adult males (mean age 35.2 years, range 21-63) were enrolled in the study. Cognitive function was assessed using Cambridge Neuropsychological Test Automated Battery and early life stress was assessed using the Childhood Traumatic Events Scale (Pennebaker & Susman, 1988). RESULTS DRD2 C957T was significantly associated with executive function, with CC homozygotes having significantly reduced performance in spatial working memory and spatial planning. A significant genotype-trauma interaction was found in Rapid Visual Information Processing test, a measure of sustained attention, with CC carriers who had experienced early life stress exhibiting impaired performance compared to the CC carriers without early life stressful experiences. There were no significant findings for COMT Val158Met. CONCLUSIONS This study supports previous findings that DRD2 C957T significantly affects performance on executive function related tasks in healthy individuals and shows for the first time that some of these effects may be mediated through the impact of childhood traumatic events. Future work should aim to clarify further the effect of stress on neuronal systems that are known to be vulnerable in mental health disorders and more specifically what the impact of this might be on cognitive function.
Collapse
Affiliation(s)
- Kristel Klaus
- School of Psychology University of Lincoln Lincoln UK
| | - Kevin Butler
- School of Psychology University of Lincoln Lincoln UK
| | | | - Manir Ali
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | - Chris F Inglehearn
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | | | | | | |
Collapse
|
23
|
Richter A, Barman A, Wüstenberg T, Soch J, Schanze D, Deibele A, Behnisch G, Assmann A, Klein M, Zenker M, Seidenbecher C, Schott BH. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor. Front Psychol 2017; 8:654. [PMID: 28507526 PMCID: PMC5410587 DOI: 10.3389/fpsyg.2017.00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory.
Collapse
Affiliation(s)
- Anni Richter
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany
| | - Joram Soch
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Anna Deibele
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Anne Assmann
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany
| | - Marieke Klein
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
24
|
Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation. Sci Rep 2017; 7:45982. [PMID: 28393838 PMCID: PMC5385564 DOI: 10.1038/srep45982] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
Sleep deprivation impairs cognitive performance and reliably alters brain activation in wakefulness and sleep. Nevertheless, the molecular regulators of prolonged wakefulness remain poorly understood. Evidence from genetic, behavioral, pharmacologic and imaging studies suggest that dopaminergic signaling contributes to the behavioral and electroencephalographic (EEG) consequences of sleep loss, although direct human evidence thereof is missing. We tested whether dopamine neurotransmission regulate sustained attention and evolution of EEG power during prolonged wakefulness. Here, we studied the effects of functional genetic variation in the dopamine transporter (DAT1) and the dopamine D2 receptor (DRD2) genes, on psychomotor performance and standardized waking EEG oscillations during 40 hours of wakefulness in 64 to 82 healthy volunteers. Sleep deprivation consistently enhanced sleepiness, lapses of attention and the theta-to-alpha power ratio (TAR) in the waking EEG. Importantly, DAT1 and DRD2 genotypes distinctly modulated sleep loss-induced changes in subjective sleepiness, PVT lapses and TAR, according to inverted U-shaped relationships. Together, the data suggest that genetically determined differences in DAT1 and DRD2 expression modulate functional consequences of sleep deprivation, supporting the hypothesis that striato-thalamo-cortical dopaminergic pathways modulate the neurobehavioral and neurophysiological consequences of sleep loss in humans.
Collapse
|
25
|
Passow S, Thurm F, Li SC. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age. Front Aging Neurosci 2017; 9:33. [PMID: 28280465 PMCID: PMC5322263 DOI: 10.3389/fnagi.2017.00033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age.
Collapse
Affiliation(s)
- Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Dresden, Germany
| |
Collapse
|
26
|
Colzato LS, Steenbergen L, Sellaro R, Stock AK, Arning L, Beste C. Effects of l-Tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex 2016; 82:217-224. [PMID: 27403851 DOI: 10.1016/j.cortex.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022]
Abstract
l-Tyrosine (TYR), the precursor of dopamine (DA), has been shown to enhance facets of cognitive control in situations with high cognitive demands. However some previous outcomes were mixed: some studies reported significant improvements, while other did not. Given that TYR increases DA level in the brain, we investigated, in a double-blind, randomized, placebo-controlled design, whether the C957T genotypes of a functional synonymous polymorphism in the human dopamine D2 receptor (DRD2) gene (rs6277) contribute to individual differences in the reactivity to TYR administration and whether this factor predicts the magnitude of TYR-induced performance differences on inhibiting behavioral responses in a stop-signal task and working memory (WM) updating in a N-back task. Our findings show that T/T homozygotes (i.e., individuals potentially associated with lower striatal DA level) showed larger beneficial effects of TYR supplementation than C/C homozygotes (i.e., individuals potentially associated with higher striatal DA level), suggesting that genetically determined differences in DA function may explain inter-individual differences in response to TYR supplementation. These findings reinforce the idea that genetic predisposition modulates the effect of TYR in its role as cognitive enhancer.
Collapse
Affiliation(s)
- Lorenza S Colzato
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Roberta Sellaro
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany; Experimental Neurobiology, National Institute of Mental Healthy, Klecany, Czech Republic
| |
Collapse
|
27
|
Interactive effects of age and multi-gene profile on motor learning and sensorimotor adaptation. Neuropsychologia 2016; 84:222-34. [PMID: 26926580 DOI: 10.1016/j.neuropsychologia.2016.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
The interactive association of age and dopaminergic polymorphisms on cognitive function has been studied extensively. However, there is limited research on whether age interacts with the association between genetic polymorphisms and motor learning. We examined a group of young and older adults' performance in three motor tasks: explicit sequence learning, visuomotor adaptation, and grooved pegboard. We assessed whether individuals' motor learning and performance were associated with their age and genotypes. We selected three genetic polymorphisms: Catechol-O-Methyl Transferase (COMT val158met) and Dopamine D2 Receptor (DRD2 G>T), which are involved with dopaminergic regulation, and Brain Derived Neurotrophic Factor (BDNF val66met) that modulates neuroplasticity and has been shown to interact with dopaminergic genes. Although the underlying mechanisms of the function of these three genotypes are different, the high performance alleles of each have been linked to better learning and performance. We created a composite polygene score based on the Number of High Performance Alleles (NHPA) that each individual carried. We found several associations between genetic profile, motor performance, and sensorimotor adaptation. More importantly, we found that this association varies with age, task type, and engagement of implicit versus explicit learning processes.
Collapse
|
28
|
Abstract
Although aging is associated with clear declines in physical and cognitive processes, emotional functioning fares relatively well. Consistent with this behavioral profile, two core emotional brain regions, the amygdala and ventromedial prefrontal cortex, show little structural and functional decline in aging, compared with other regions. However, emotional processes depend on interacting systems of neurotransmitters and brain regions that go beyond these structures. This review examines how age-related brain changes influence processes such as attending to and remembering emotional stimuli, regulating emotion, and recognizing emotional expressions, as well as empathy, risk taking, impulsivity, behavior change, and attentional focus.
Collapse
Affiliation(s)
- Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, California 90089;
| |
Collapse
|
29
|
Dopamine and cognitive control: Sex-by-genotype interactions influence the capacity to switch attention. Behav Brain Res 2015; 281:96-101. [DOI: 10.1016/j.bbr.2014.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/20/2022]
|
30
|
Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging. Neuropsychol Rev 2015; 25:47-62. [DOI: 10.1007/s11065-015-9279-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
|
31
|
Persson J, Rieckmann A, Kalpouzos G, Fischer H, Bäckman L. Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: magnification in aging. Hum Brain Mapp 2014; 36:1325-34. [PMID: 25486867 DOI: 10.1002/hbm.22704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
A number of genetic polymorphisms are related to individual differences in cognitive performance. Striatal dopamine (DA) functions, associated with cognitive performance, are linked to the TaqIA polymorphism of the DRD2/ANKK1 gene. In humans, presence of an A1 allele of the DRD2/ANKK1-TaqIA polymorphism is related to reduced density of striatal DA D2 receptors. The resource-modulation hypothesis assumes that aging-related losses of neurochemical and structural brain resources modulate the extent to which genetic variations affect cognitive functioning. Here, we tested this hypothesis using functional MRI during long-term memory (LTM) updating in younger and older carriers and noncarriers of the A1-allele of the TaqIa polymorphism. We demonstrate that older A1-carriers have worse memory performance, specifically during LTM updating, compared to noncarriers. Moreover, A1-carriers exhibited less blood oxygen level-dependent (BOLD) activation in left caudate nucleus, a region critical to updating. This effect was only seen in older adults, suggesting magnification of genetic effects on functional brain activity in aging. Further, a positive relationship between caudate BOLD activation and updating performance among non-A1 carriers indicated that caudate activation was behaviorally relevant. These results demonstrate a link between the DRD2/ANKK1-TaqIA polymorphism and neurocognitive deficits related to LTM updating, and provide novel evidence that this effect is magnified in aging.
Collapse
Affiliation(s)
- Jonas Persson
- Aging Research Center (ARC), Karolinska Institute and Stockholm University, Gävlegatan 16, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
32
|
Jongkees BJ, Hommel B, Colzato LS. People are different: tyrosine's modulating effect on cognitive control in healthy humans may depend on individual differences related to dopamine function. Front Psychol 2014; 5:1101. [PMID: 25339925 PMCID: PMC4186281 DOI: 10.3389/fpsyg.2014.01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bryant J Jongkees
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Bernhard Hommel
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Lorenza S Colzato
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| |
Collapse
|
33
|
No association between CTNNBL1 and episodic memory performance. Transl Psychiatry 2014; 4:e454. [PMID: 25268258 PMCID: PMC4203019 DOI: 10.1038/tp.2014.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/01/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022] Open
Abstract
Polymorphisms in the gene encoding catenin-β-like 1 (CTNNBL1) were recently reported to be associated with verbal episodic memory performance--in particular, delayed verbal free recall assessed between 5 and 30 min after encoding--in a genome-wide association study on healthy young adults. To further examine the genetic effects of CTNNBL1, we tested for association between 455 single-nucleotide polymorphisms (SNPs) in or near CTNNBL1 and 14 measures of episodic memory performance from three different tasks in 1743 individuals. Probands were part of a population-based study of mentally healthy adult men and women, who were between 20 and 70 years old and were recruited as participants for the Berlin Aging Study II. Associations were assessed using linear regression analysis. Despite having sufficient power to detect the previously reported effect sizes, we found no evidence for statistically significant associations between the tested CTNNBL1 SNPs and any of the 14 measures of episodic memory. The previously reported effects of genetic polymorphisms in CTNNBL1 on episodic memory performance do not generalize to the broad range of tasks assessed in our cohort. If not altogether spurious, the effects may be limited to a very narrow phenotypic domain (that is, verbal delayed free recall between 5 and 30 min). More studies are needed to further clarify the role of CTNNBL1 in human memory.
Collapse
|
34
|
Pantzar A, Laukka EJ, Atti AR, Papenberg G, Keller L, Graff C, Fratiglioni L, Bäckman L. Interactive effects of KIBRA and CLSTN2 polymorphisms on episodic memory in old-age unipolar depression. Neuropsychologia 2014; 62:137-42. [PMID: 25080189 DOI: 10.1016/j.neuropsychologia.2014.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
The KIBRA (rs17070145) C-allele and the CLSTN2 (rs6439886) T-allele have both been associated with poorer episodic memory performance. Given that episodic memory is affected in depression, we hypothesized that the combination of these risk alleles would be particularly detrimental to episodic memory performance in depressed persons. In the population-based SNAC-K study, 2170 participants (≥ 60 years) without dementia (DSM-IV criteria) and antidepressant pharmacotherapy were clinically examined and diagnosed following ICD-10 criteria for unipolar depression, and genotyped for KIBRA and CLSTN2. Participants were categorized according to unipolar depression status (yes, no) and genotype combinations (KIBRA: CC, any T; CLSTN2: TT, any C). Critically, a three-way interaction effect showed that the CC/TT genotype combination was associated with poorer episodic recall and recognition performance only in depressed elderly persons, with depressed CC/TT carriers consistently performing at the lowest level. This finding supports the view that effects of genetic polymorphisms on cognitive functioning may be most easily disclosed at suboptimal levels of cognitive ability, such as in old-age depression.
Collapse
Affiliation(s)
- Alexandra Pantzar
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden.
| | - Erika J Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden
| | | | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden; Max Planck Institute for Human Development, Berlin, Germany
| | - Lina Keller
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden; Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden
| | - Caroline Graff
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Karolinska University Hospital, Department of Geriatric Medicine, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
35
|
Li SC, Rieckmann A. Neuromodulation and aging: implications of aging neuronal gain control on cognition. Curr Opin Neurobiol 2014; 29:148-58. [PMID: 25064177 DOI: 10.1016/j.conb.2014.07.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022]
Abstract
The efficacy of various transmitter systems declines with advancing age. Of particular interest, various pre-synaptic and post-synaptic components of the dopaminergic system change across the human lifespan; impairments in these components play important roles in cognitive deficits commonly observed in the elderly. Here, we review evidence from recent multimodal neuroimaging, pharmacological and genetic studies that have provided new insights for the associations among dopamine functions, aging, functional brain activations and behavioral performance across key cognitive functions, ranging from working memory and episodic memory to goal-directed learning and decision making. Specifically, we discuss these empirical findings in the context of an established neurocomputational theory of aging neuronal gain control. We also highlight gaps in the current understanding of dopamine neuromodulation and aging brain functions and suggest avenues for future research.
Collapse
Affiliation(s)
- Shu-Chen Li
- Lifespan Developmental Neuroscience, Department of Psychology, TU Dresden Zellescher Weg 17, Dresden D-01062, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin D-14195, Germany.
| | - Anna Rieckmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umea 901 87, Sweden
| |
Collapse
|
36
|
Schröder J, Ansaloni S, Schilling M, Liu T, Radke J, Jaedicke M, Schjeide BMM, Mashychev A, Tegeler C, Radbruch H, Papenberg G, Düzel S, Demuth I, Bucholtz N, Lindenberger U, Li SC, Steinhagen-Thiessen E, Lill CM, Bertram L. MicroRNA-138 is a potential regulator of memory performance in humans. Front Hum Neurosci 2014; 8:501. [PMID: 25071529 PMCID: PMC4093940 DOI: 10.3389/fnhum.2014.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/20/2014] [Indexed: 01/01/2023] Open
Abstract
Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate “memory genes,” these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 × 10−9). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 × 10−4). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3′ untranslated region (3′ UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3′ UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function.
Collapse
Affiliation(s)
- Julia Schröder
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Charité Research Group on Geriatrics, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Sara Ansaloni
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Marcel Schilling
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology Berlin, Germany
| | - Tian Liu
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Marian Jaedicke
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Brit-Maren M Schjeide
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Andriy Mashychev
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany
| | - Christina Tegeler
- Charité Research Group on Geriatrics, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Goran Papenberg
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany ; Aging Research Center, Karolinska Institute Stockholm, Sweden
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany
| | - Ilja Demuth
- Charité Research Group on Geriatrics, Charité - Universitätsmedizin Berlin Berlin, Germany ; Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Nina Bucholtz
- Charité Research Group on Geriatrics, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany
| | - Shu-Chen Li
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany ; Department of Psychology, Lifespan Developmental Neuroscience, TU Dresden Dresden, Germany
| | | | - Christina M Lill
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Focus Program Translational Neuroscience, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Faculty of Medicine, School of Public Health, Imperial College London London, UK
| |
Collapse
|
37
|
Papenberg G, Li SC, Nagel IE, Nietfeld W, Schjeide BM, Schröder J, Bertram L, Heekeren HR, Lindenberger U, Bäckman L. Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiol Aging 2013; 35:1213.e3-8. [PMID: 24332987 DOI: 10.1016/j.neurobiolaging.2013.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/23/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
Both the dopaminergic and glutamatergic systems modulate episodic memory consolidation. Evidence from animal studies suggests that these two neurotransmitters may interact in influencing memory performance. Given that individual differences in episodic memory are heritable, we investigated whether variations of the dopamine D2 receptor gene (rs6277, C957T) and the N-methyl-D-aspartate 3A (NR3A) gene, coding for the N-methyl-D-aspartate 3A subunit of the glutamate N-methyl-D-aspartate receptor (rs10989591, Val362Met), interactively modulate episodic memory in large samples of younger (20-31 years; n = 670) and older (59-71 years; n = 832) adults. We found a reliable gene-gene interaction, which was observed in older adults only: older individuals carrying genotypes associated with greater D2 and N-methyl-D-aspartate receptor efficacy showed better episodic performance. These results are in line with findings showing magnification of genetic effects on memory in old age, presumably as a consequence of reduced brain resources. Our findings underscore the need for investigating interactive effects of multiple genes to understand individual difference in episodic memory.
Collapse
Affiliation(s)
- Goran Papenberg
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Shu-Chen Li
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Irene E Nagel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Nietfeld
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Brit-Maren Schjeide
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Schröder
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité Research Group on Geriatrics, Charité-Universitätsmedizin, Berlin, Germany
| | - Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hauke R Heekeren
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
38
|
Li SC. Neuromodulation and developmental contextual influences on neural and cognitive plasticity across the lifespan. Neurosci Biobehav Rev 2013; 37:2201-8. [DOI: 10.1016/j.neubiorev.2013.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
39
|
Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia 2013; 51:2757-69. [DOI: 10.1016/j.neuropsychologia.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/13/2023]
|
40
|
Schuck NW, Doeller CF, Schjeide BMM, Schröder J, Frensch PA, Bertram L, Li SC. Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus 2013; 23:919-30. [DOI: 10.1002/hipo.22148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas W. Schuck
- Max Planck Institute for Human Development; Center for Lifespan Psychology; 14195 Berlin Germany
- Department of Psychology; Humboldt-Universität zu Berlin; 10099 Berlin Germany
| | - Christian F. Doeller
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; 6525 Nijmegen The Netherlands
| | - Brit-Maren M. Schjeide
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
| | - Julia Schröder
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
- Evangelisches Geriatriezentrum Berlin; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Peter A. Frensch
- Department of Psychology; Humboldt-Universität zu Berlin; 10099 Berlin Germany
| | - Lars Bertram
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
| | - Shu-Chen Li
- Max Planck Institute for Human Development; Center for Lifespan Psychology; 14195 Berlin Germany
- Department of Psychology; TU Dresden, Section of Lifespan Developmental Neuroscience; 01062 Dresden Germany
| |
Collapse
|
41
|
The genetic impact (C957T-DRD2) on inhibitory control is magnified by aging. Neuropsychologia 2013; 51:1377-81. [DOI: 10.1016/j.neuropsychologia.2013.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 01/09/2023]
|
42
|
Papenberg G, Bäckman L, Nagel IE, Nietfeld W, Schröder J, Bertram L, Heekeren HR, Lindenberger U, Li SC. Dopaminergic Gene Polymorphisms Affect Long-term Forgetting in Old Age: Further Support for the Magnification Hypothesis. J Cogn Neurosci 2013; 25:571-9. [DOI: 10.1162/jocn_a_00359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Emerging evidence from animal studies suggests that suboptimal dopamine (DA) modulation may be associated with increased forgetting of episodic information. Extending these observations, we investigated the influence of DA-relevant genes on forgetting in samples of younger (n = 433, 20–31 years) and older (n = 690, 59–71 years) adults. The effects of single nucleotide polymorphisms of the DA D2 (DRD2) and D3 (DRD3) receptor genes as well as the DA transporter gene (DAT1; SLC6A3) were examined. Over the course of one week, older adults carrying two or three genotypes associated with higher DA signaling (i.e., higher availability of DA and DA receptors) forgot less pictorial information than older individuals carrying only one or no beneficial genotype. No such genetic effects were found in younger adults. The results are consistent with the view that genetic effects on cognition are magnified in old age. To the best of our knowledge, this is the first report to relate genotypes associated with suboptimal DA modulation to more long-term forgetting in humans. Independent replication studies in other populations are needed to confirm the observed association.
Collapse
Affiliation(s)
- Goran Papenberg
- 1Max Planck Institute for Human Development, Berlin, Germany
- 2Karolinska Institute, Stockholm, Sweden
| | | | - Irene E. Nagel
- 1Max Planck Institute for Human Development, Berlin, Germany
- 4Freie Universität Berlin
| | | | - Julia Schröder
- 3Max Planck Institute for Molecular Genetics, Berlin, Germany
- 5Charité Universitätsmedizin, Berlin, Germany
| | - Lars Bertram
- 3Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hauke R. Heekeren
- 1Max Planck Institute for Human Development, Berlin, Germany
- 4Freie Universität Berlin
| | | | - Shu-Chen Li
- 1Max Planck Institute for Human Development, Berlin, Germany
- 6TU Dresden
| |
Collapse
|
43
|
Hämmerer D, Biele G, Müller V, Thiele H, Nürnberg P, Heekeren HR, Li SC. Effects of PPP1R1B (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span. Front Psychol 2013; 4:89. [PMID: 23459765 PMCID: PMC3586677 DOI: 10.3389/fpsyg.2013.00089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Maximizing gains during probabilistic reinforcement learning requires the updating of choice – outcome expectations at the time when the feedback about a specific choice or action is given. Extant theories and evidence suggest that dopaminergic modulation plays a crucial role in reinforcement learning and the updating of choice – outcome expectations. Furthermore, recently a positive component of the event-related potential about 200 ms (P2) after feedback has been suggested to reflect such updating. The efficacy of dopaminergic modulation changes across the life span. However, to date investigations of age-related differences in feedback-related P2 during reinforcement learning are still scarce. The present study thus aims to investigate whether individual differences in the feedback-related P2 would be associated with polymorphic variations in a dopamine relevant gene PPP1R1B (also known as DARPP-32) and whether the genetic effect may differ between age groups. We observed larger P2 amplitudes in individuals carrying the genotype associated with higher dopamine receptor efficacy, i.e., a allele homozygotes of a single nucleotide polymorphism (rs907094) of the PPP1R1B gene. Moreover, this effect was more pronounced in children and older adults in comparison to adolescents and younger adults. Together, our findings indicate that polymorphic variations in a dopamine relevant gene are associated with individual differences in brain-evoked potentials of outcome updating and hint at the possibility that genotype effects on neurocognitive phenotypes may vary as a function of brain maturation and aging.
Collapse
Affiliation(s)
- Dorothea Hämmerer
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany ; Department of Psychology, Technische Universität Dresden Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Dopamine and training-related working-memory improvement. Neurosci Biobehav Rev 2013; 37:2209-19. [PMID: 23333266 DOI: 10.1016/j.neubiorev.2013.01.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022]
Abstract
Converging evidence indicates that the neurotransmitter dopamine (DA) is implicated in working-memory (WM) functioning and that WM is trainable. We review recent work suggesting that DA is critically involved in the ability to benefit from WM interventions. Functional MRI studies reveal increased striatal BOLD activity following certain forms of WM interventions, such as updating training. Increased striatal BOLD activity has also been linked to transfer of learning to non-trained WM tasks, suggesting a neural signature of transfer. The striatal BOLD signal is partly determined by DA activity. Consistent with this assertion, PET research demonstrates increased striatal DA release during updating of information in WM after training. Genetic studies indicate larger increases in WM performance post training for those who carry advantageous alleles of DA-relevant genes. These patterns of results corroborate the role of DA in WM improvement. Future research avenues include: (a) neuromodulatory correlates of transfer; (b) the potential of WM training to enhance DA release in older adults; (c) comparisons among different WM processes (i.e., updating, switching, inhibition) regarding regional patterns of training-related DA release; and (d) gene-gene interactions in relation to training-related WM gains.
Collapse
|