1
|
Yu H, Wu B, He J, Yi J, Wu W, Wang H, Yang Q, Sun D, Zheng H. Exploring the epigenetic impacts of atrazine in zebrafish: Unveiling mechanisms of neurotoxicity, reproductive toxicity, and implications for human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125941. [PMID: 40023241 DOI: 10.1016/j.envpol.2025.125941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Atrazine (ATZ), a widely utilized herbicide, is notable for its long environmental half-life and high solubility, raising significant concerns regarding its ecological and health impacts. While debates continue over its role as an endocrine disruptor, increasing attention has been directed toward its potential epigenetic effects. Utilizing the zebrafish model, a vertebrate with considerable genetic similarity to humans, provides valuable insights into how ATZ exposure may translate into human health risks. This review systematically examines the differential DNA methylation induced by ATZ's non-competitive inhibition of DNA methyltransferases, miRNA dysregulation resulting from mutations in miRNA processing enzymes, and the complex epigenetic interactions affecting histone modifications. Additionally, potential epigenetic biomarkers for ATZ exposure are proposed, which could advance targeted treatment strategies and improve health risk assessments. This synthesis of current understanding identifies knowledge gaps and guides future research towards a more comprehensive understanding of ATZ's epigenetic mechanisms.
Collapse
Affiliation(s)
- Haiyang Yu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Hongliang Zheng
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
2
|
Gupta V, Bhattacharyya A, Hwang YJ, Choi YH. In ovo sericin suppresses hepatic DNA demethylation in broilers at hatch. Poult Sci 2025; 104:105078. [PMID: 40127566 PMCID: PMC11980003 DOI: 10.1016/j.psj.2025.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
Over the years, the rearing period of the commercial broilers to attain the slaughter weight has reduced significantly. Hence, it emphasizes the importance of the period of embryonic development. It has been shown that inadequate nutritional supply to the embryo at the later phases can lead to various abnormalities. This adversely affects the hatchability and further the post-hatch performance of the chicks. This study attempted to study the effect of in ovo feeding of sericin on the developing Ross-308 embryos. Fertile eggs (n = 210) at 17.5 days of embryonic development (ED) were equally divided into five treatments based on the concentration of sericin fed. The treatments were: uninjected control (UCON), followed by different concentrations of sericin injected groups as 0SER (0 % sericin), 1.5SER (1.5 % sericin), 3.0SER (3.0 % sericin), and 4.5SER (4.5 % sericin). Hatch parameters across treatments did not differ significantly. Similarly, the organ (liver, yolk sac, gizzard, proventriculus and heart) indices and plasma antioxidant markers such as 2,2-Diphenyl-1-picrylhydrazyl - radical scavenging activity % (DPPH-RSA%) and malondialdehyde (MDA) content did not differ significantly across treatments. The hepatic mRNA expression of superoxide dismutase (SOD) was higher in 3.0SER treatment in comparison to 4.5SER. On the other hand, in ovo sericin downregulated the hepatic gene expression of DNA demethylation-related enzymes such as ten-eleven translocation methylcytosine dioxygenase 3 (TET3, p = 0.028) and methyl-CpG-binding domain protein 4 (MBD4, p = 0.007) compared to 0SER. Pearson's correlation analyses revealed a significant correlation between the hepatic gene expression of NADPH oxidase (NOX) related genes and DNA-demethylation-related genes (p < 0.01). Hence, in ovo sericin might not be potentially beneficial in improving the hatchability of broilers. Also, no notable effects on the antioxidant capacity of plasma was recorded. However, in ovo sericin downregulated the mRNA expression of some DNA demethylation-related genes which were significantly correlated with the expression of NOXs. Therefore, in ovo sericin feeding could suppress DNA demethylation which could in turn be beneficial to alleviate oxidative stress at hatch.
Collapse
Affiliation(s)
- Vaishali Gupta
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 FOUR Program), Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Amitav Bhattacharyya
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Poultry Science, College of Veterinary Science and Animal Husbandry, DUVASU, Mathura 281001, India.
| | - Yun-Ji Hwang
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 FOUR Program), Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 FOUR Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Hickey JP, Collins AE, Nelson ML, Chen H, Kalisch BE. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4379-4402. [PMID: 38785534 PMCID: PMC11120237 DOI: 10.3390/cimb46050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.
Collapse
Affiliation(s)
| | | | | | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.H.); (A.E.C.); (M.L.N.); (H.C.)
| |
Collapse
|
6
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
9
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Liu F, Last KS, Henry TB, Reinardy HC. Interspecific differences in oxidative DNA damage after hydrogen peroxide exposure of sea urchin coelomocytes. Mutagenesis 2022; 38:13-20. [PMID: 36130095 PMCID: PMC9897020 DOI: 10.1093/mutage/geac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms. The objective of the current study was to measure and compare differences in levels of H2O2-induced oxidative DNA damage in coelomocytes from Scottish sea urchins Echinus esculentus, Paracentrotus lividus, and Psammechinus miliaris. Coelomocytes were exposed to H2O2 (0-50 mM) for 10 min, cell concentration and viability were quantified, and DNA damage was measured by the fast micromethod, an alkaline unwinding DNA method, and the modified fast micromethod with nucleotide-specific enzymes. Cell viability was >92% in all exposures and did not differ from controls. Psammechinus miliaris coelomocytes had the highest oxidative DNA damage with 0.07 ± 0.01, 0.08 ± 0.01, and 0.07 ± 0.01 strand scission factors (mean ± SD) after incubation with phosphate-buffered saline, formamidopyrimidine-DNA glycosylase, and endonuclease-III, respectively, at 50 mM H2O2. Exposures to 0.5 mM H2O2 (100-fold dilution from recommended lice treatment concentration) induced oxidative DNA damage in all three species of sea urchins, suggesting interspecific differences in vulnerabilities to DNA damage and/or DNA repair mechanisms. Understanding impacts of environmental genotoxicants requires understanding species-specific susceptibilities to DNA damage, which can impact long-term stability in sea urchin populations in proximity to aquaculture farms.
Collapse
Affiliation(s)
- Fengjia Liu
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Kim S Last
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Theodore B Henry
- Institute of Earth and Life Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom,Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena C Reinardy
- Corresponding author. Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK. E-mail: ;
| |
Collapse
|
11
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Singh P, Barman B, Thakur MK. Oxidative stress-mediated memory impairment during aging and its therapeutic intervention by natural bioactive compounds. Front Aging Neurosci 2022; 14:944697. [PMID: 35959291 PMCID: PMC9357995 DOI: 10.3389/fnagi.2022.944697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and associated neurodegenerative diseases are accompanied by the decline of several brain functions including cognitive abilities. Progressive deleterious changes at biochemical and physiological levels lead to the generation of oxidative stress, accumulation of protein aggregates, mitochondrial dysfunctions, loss of synaptic connections, and ultimately neurodegeneration and cognitive decline during aging. Oxidative stress that arises due to an imbalance between the rates of production and elimination of free radicles is the key factor for age-associated neurodegeneration and cognitive decline. Due to high energy demand, the brain is more susceptible to free radicals-mediated damages as they oxidize lipids, proteins, and nucleic acids, thereby causing an imbalance in the homeostasis of the aging brain. Animal, as well as human subject studies, showed that with almost no or few side effects, dietary interventions and plant-derived bioactive compounds could be beneficial to recovering the memory or delaying the onset of memory impairment. As the plant-derived bioactive compounds have antioxidative properties, several of them were used to recover the oxidative stress-mediated changes in the aging brain. In the present article, we review different aspects of oxidative stress-mediated cognitive change during aging and its therapeutic intervention by natural bioactive compounds.
Collapse
Affiliation(s)
- Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi, India
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhabotosh Barman
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Department of Zoology, Banaras Hindu University, Varanasi, India
- *Correspondence: Mahendra Kumar Thakur,
| |
Collapse
|
13
|
1,8-Cineole Ameliorates Advanced Glycation End Products-Induced Alzheimer's Disease-like Pathology In Vitro and In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123913. [PMID: 35745036 PMCID: PMC9229467 DOI: 10.3390/molecules27123913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer’s disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3β and reducing Aβ production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.
Collapse
|
14
|
Ilina A, Khavinson V, Linkova N, Petukhov M. Neuroepigenetic Mechanisms of Action of Ultrashort Peptides in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23084259. [PMID: 35457077 PMCID: PMC9032300 DOI: 10.3390/ijms23084259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetic regulation of gene expression is necessary for maintaining higher-order cognitive functions (learning and memory). The current understanding of the role of epigenetics in the mechanism of Alzheimer’s disease (AD) is focused on DNA methylation, chromatin remodeling, histone modifications, and regulation of non-coding RNAs. The pathogenetic links of this disease are the misfolding and aggregation of tau protein and amyloid peptides, mitochondrial dysfunction, oxidative stress, impaired energy metabolism, destruction of the blood–brain barrier, and neuroinflammation, all of which lead to impaired synaptic plasticity and memory loss. Ultrashort peptides are promising neuroprotective compounds with a broad spectrum of activity and without reported side effects. The main aim of this review is to analyze the possible epigenetic mechanisms of the neuroprotective action of ultrashort peptides in AD. The review highlights the role of short peptides in the AD pathophysiology. We formulate the hypothesis that peptide regulation of gene expression can be mediated by the interaction of short peptides with histone proteins, cis- and transregulatory DNA elements and effector molecules (DNA/RNA-binding proteins and non-coding RNA). The development of therapeutic agents based on ultrashort peptides may offer a promising addition to the multifunctional treatment of AD.
Collapse
Affiliation(s)
- Anastasiia Ilina
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-(953)145-89-58
| | - Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
| | - Mikhael Petukhov
- Department of Molecular Radiation Biophysics, Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
15
|
Epigenome-Wide Analysis of DNA Methylation in Parkinson's Disease Cortex. Life (Basel) 2022; 12:life12040502. [PMID: 35454993 PMCID: PMC9025601 DOI: 10.3390/life12040502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene−environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which that is characterised by a late onset in life. Aims: To determine epigenetic modifications in the brains of Parkinson’s disease patients. Patients and Methods: DNA methylation patterns were compared in the cortex tissue of 14 male PD patients and 10 male healthy individuals using the Illumina Methylation 450 K chip. Subsequently, DNA methylation of candidate genes was evaluated using bisulphite pyrosequencing, and DNA methylation of cytochrome P450 2E1 (CYP2E1) was characterized in DNA from blood mononuclear cells (259 PD patients and 182 healthy controls) and skin fibroblasts (10 PD patients and 5 healthy controls). Protein levels of CYP2E1 were analysed using Western blot in human cortex and knock-out mice brain samples. Results: We found 35 hypomethylated and 22 hypermethylated genes with a methylation M-value difference >0.5. Decreased methylation of cytochrome P450 2E1 (CYP2E1) was associated with increased protein levels in PD brains, but in peripheral tissues, i.e., in blood cells and skin fibroblasts, DNA methylation of CYP2E1 was unchanged. In CYP2E1 knock-out mice brain alpha-synuclein (SNCA) protein levels were down-regulated compared to wild-type mice, whereas treatment with trichloroethylene (TCE) up-regulated CYP2E1 protein in a dose-dependent manner in cultured cells. We further identified an interconnected group of genes associated with oxidative stress, such as Methionine sulfoxide reductase A (MSRA) and tumour protein 73 (TP73) in the brain, which again were not paralleled in other tissues and appeared to indicate brain-specific changes. Conclusions: Our study revealed surprisingly few dysmethylated genes in a brain region less affected in PD. We confirmed hypomethylation of CYP2E1.
Collapse
|
16
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
17
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Wright DE, Panaseiko N, O'Donoghue P. Acetylated Thioredoxin Reductase 1 Resists Oxidative Inactivation. Front Chem 2021; 9:747236. [PMID: 34604175 PMCID: PMC8479162 DOI: 10.3389/fchem.2021.747236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Thioredoxin Reductase 1 (TrxR1) is an enzyme that protects human cells against reactive oxygen species generated during oxidative stress or in response to chemotherapies. Acetylation of TrxR1 is associated with oxidative stress, but the function of TrxR1 acetylation in oxidizing conditions is unknown. Using genetic code expansion, we produced recombinant and site-specifically acetylated variants of TrxR1 that also contain the non-canonical amino acid, selenocysteine, which is essential for TrxR1 activity. We previously showed site-specific acetylation at three different lysine residues increases TrxR1 activity by reducing the levels of linked dimers and low activity TrxR1 tetramers. Here we use enzymological studies to show that acetylated TrxR1 is resistant to both oxidative inactivation and peroxide-induced multimer formation. To compare the effect of programmed acetylation at specific lysine residues to non-specific acetylation, we produced acetylated TrxR1 using aspirin as a model non-enzymatic acetyl donor. Mass spectrometry confirmed aspirin-induced acetylation at multiple lysine residues in TrxR1. In contrast to unmodified TrxR1, the non-specifically acetylated enzyme showed no loss of activity under increasing and strongly oxidating conditions. Our data suggest that both site-specific and general acetylation of TrxR1 regulate the enzyme’s ability to resist oxidative damage.
Collapse
Affiliation(s)
- David E Wright
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nikolaus Panaseiko
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada.,Departments of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Nanotheranostic agents for neurodegenerative diseases. Emerg Top Life Sci 2021; 4:645-675. [PMID: 33320185 DOI: 10.1042/etls20190141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.
Collapse
|
20
|
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging 2021; 107:86-95. [PMID: 34416493 DOI: 10.1016/j.neurobiolaging.2021.07.014] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that are necessary for physiological function but can be toxic at high levels. Levels of these oxidative stressors increase gradually throughout the lifespan, impairing mitochondrial function and damaging all parts of the body, particularly the central nervous system. Emerging evidence suggests that accumulated oxidative stress may be one of the key mechanisms causing cognitive aging and neurodegenerative diseases such as Alzheimer's disease (AD). Here, we synthesize the current literature on the effect of neuronal oxidative stress on mitochondrial dysfunction, DNA damage and epigenetic changes related to cognitive aging and AD. We further describe how oxidative stress therapeutics such as antioxidants, caloric restriction and physical activity can reduce oxidation and prevent cognitive decline in brain aging and AD. Of the currently available therapeutics, we propose that long term physical activity is the most promising avenue for improving cognitive health by reducing ROS while promoting the low levels required for optimal function.
Collapse
Affiliation(s)
- Andra Ionescu-Tucker
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California.
| |
Collapse
|
21
|
Zhu L, Wang L, Fan X, Dong C, Wang G, Wang Z. Chronic exposure to Bisphenol A resulted in alterations of reproductive functions via immune defense, oxidative damage and disruption DNA/histone methylation in male rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105849. [PMID: 34010735 DOI: 10.1016/j.aquatox.2021.105849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a widely used chemical that represents a reproductive hazard in fish. However, the molecular pathways mediating reproductive toxicity under chronic BPA exposure remain unclear. To study the reproductive hazards associated with chronic BPA exposure, adult male rare minnows (Gobiocypris rarus) were treated with 15 μg L - 1 and 225 μg L - 1 BPA for 90 days. Results showed that chronic BPA treatment induced reproductive impairments with decreased fertilization capacity and movement time of sperm. Transcriptome analysis indicated 1421 transcripts that were differentially expressed in response to BPA exposure, which are involved in the biological process of oxidative stress, immune responses and DNA/histone methylation. BPA caused the oxidative stress via significantly increasing hydrogen peroxide (H2O2) levels and inhibiting the activities of antioxidant-related enzymes (Catalase, CAT). BPA caused an inflammatory response in the testes by significantly increasing IL-1β levels and inducing infiltration of inflammatory cells. Moreover, exposure to 15 μg L - 1 BPA significantly decreased the genomic DNA methylation level. These data revealed that chronic BPA exposure had adverse effects on male reproduction. Oxidative stress, inflammatory response and DNA/histone methylation might account for the decreased sperm quality.
Collapse
Affiliation(s)
- Long Zhu
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Chenglong Dong
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China..
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100 China..
| |
Collapse
|
22
|
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S, Huang D, Ji Z, Liu GH, Wang S, Song M, Qu J. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 2021; 49:4203-4219. [PMID: 33706382 PMCID: PMC8096253 DOI: 10.1093/nar/gkab161] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
23
|
|
24
|
Responsive Expression of MafF to β-Amyloid-Induced Oxidative Stress. DISEASE MARKERS 2020; 2020:8861358. [PMID: 33488846 PMCID: PMC7787795 DOI: 10.1155/2020/8861358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
The small musculoaponeurotic fibrosarcoma (sMaf) proteins MafF, MafG, and MafK are basic region leucine zipper- (bZIP-) type transcription factors and display tissue- or stimulus-specific expression patterns. As the oxidative stress reactive proteins, sMafs are implicated in various neurological disorders. In the present study, the expressions of sMafs were investigated across five databases gathering transcriptomic data from 74 Alzheimer's disease (AD) patients and 66 controls in the Gene Expression Omnibus (GEO) database. The expression of MafF was increased in the hippocampus of AD patients, which was negatively correlated with the expression of the glutamate cysteine ligase catalytic subunit (GCLC). Furthermore, MafF was significantly increased in patients with Braak stage V-VI, compared to those with Braak stage III-IV. β-Amyloid (Aβ), a strong inducer of oxidative stress, plays a crucial role in the pathogenesis of AD. The responsive expressions of sMafs to Aβ-induced oxidative stress were studied in the APP/PS1 mouse model of AD, Aβ intrahippocampal injection rats, and several human cell lines from different tissue origins. This study revealed that only the induction of MafF was accompanied with reduction of GCLC and glutathione (GSH). MafF knockdown suppressed the increase of GSH induced by Aβ. Among sMafs, MafF is the most responsive to Aβ-induced oxidative stress and might potentiate the inhibition of antioxidation. These results provide a better understanding of sMaf modulation in AD and highlight MafF as a potential therapeutic target in AD.
Collapse
|
25
|
Abate G, Vezzoli M, Sandri M, Rungratanawanich W, Memo M, Uberti D. Mitochondria and cellular redox state on the route from ageing to Alzheimer's disease. Mech Ageing Dev 2020; 192:111385. [PMID: 33129798 DOI: 10.1016/j.mad.2020.111385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Several theories have been postulated, trying to explain why and how living organisms age. Despite some controversies and still huge open questions, a growing body of evidence suggest alterations of mitochondrial functionality and redox-homeostasis occur during the ageing process. Oxidative damage and mitochondrial dysfunction do not represent the cause of ageing per se but they have to be analyzed within the complexity of those series of processes occurring during lifespan. The establishment of a crosstalk among them is a shared common feature of many chronic age-related diseases, including neurodegenerative disorders, for which ageing is a major risk factor. The challenge is to understand when and how the interplay between these two systems move towards from normal ageing process to a pathological phenotype. Here in this review, we discuss the crosstalk between mitochondria and cytosolic-ROS. Furthermore, through a visual data mining approach, we attempt to describe the dynamic interplay between mitochondria and cellular redox state on the route from ageing to an AD phenotype.
Collapse
Affiliation(s)
- G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| | - M Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Sandri
- Big & Open Data Innovation Laboratory (BODaI-Lab), Department of Economics and Management, University of Brescia, Italy
| | - W Rungratanawanich
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
26
|
López-Carrasco A, Martín-Vañó S, Burgos-Panadero R, Monferrer E, Berbegall AP, Fernández-Blanco B, Navarro S, Noguera R. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line. J Exp Clin Cancer Res 2020; 39:226. [PMID: 33109237 PMCID: PMC7592549 DOI: 10.1186/s13046-020-01729-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible. METHODS We applied high density SNPa and NGS techniques to in vivo and in vitro models (orthotropic xenograft vitronectin knock-out mice and 3D bioprinted hydrogels with different stiffness) using two representative neuroblastoma cell lines (the MYCN-amplified SK-N-BE(2) and the ALK-mutated SH-SY5Y), to discern how tumor genomics patterns and clonal heterogeneity of the two cell lines are affected. RESULTS We describe a remarkable subclonal selection of genomic aberrations in SK-N-BE(2) cells grown in knock-out vitronectin xenograft mice that also emerged when cultured for long times in stiff hydrogels. In particular, we detected an enlarged subclonal cell population with chromosome 9 aberrations in both models. Similar abnormalities were found in human high-risk neuroblastoma with MYCN amplification. The genomics of the SH-SY5Y cell line remained stable when cultured in both models. CONCLUSIONS Focus on heterogeneous intratumor segmental chromosome aberrations and mutations, as a mirror image of tumor microenvironment, is a vital area of future research.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | | | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
27
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
28
|
Wang X, Zhang R, Lin Y, Shi P. Inhibition of NF-κB might enhance the protective role of roflupram on SH-SY5Y cells under amyloid β stimulation via PI3K/AKT/mTOR signaling pathway. Int J Neurosci 2020; 131:864-874. [PMID: 32314929 DOI: 10.1080/00207454.2020.1759588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease and mostly endanger the health of people older than 65 years. Accumulation of beta amyloid protein (Aβ) is the main characteristic of AD. Roflupram (ROF) could improve the behavior of AD in a mouse model. In this study, we first detected the increased concentration of molecules related to inflammatory response in serum sample of patients with AD. Next, a cell model of nuclear factor kappa B (NF-κB) inhibition and NF-κB overexpression was established in SH-SY5Y cells, Aβ was used to simulate the toxicity to cells. ROF treatment decreased expression of apoptosis-related molecules via inhibition of PI3K/AKT/mTOR signaling pathway, decreased expression of pro-inflammatory factors, and increased expression of key enzymes in the tricarboxylic acid (TCA) cycle was observed in SH-SY5Y cells after ROF treatment. Inhibition of NF-κB could enlarge these trends whereas overexpression of NF-κB could reduce these trends.
Collapse
Affiliation(s)
- Xinqiang Wang
- Neurology Department, Liaocheng Second People's Hospital, Liaocheng, China.,Neurology Department, The Second Hospital of Affiliated to Shandong First Medical University,Shandong, China
| | - Rui Zhang
- Neurology Department, Liaocheng People's Hospital, Liaocheng, China
| | - Yongquan Lin
- Emergency Department, Yidu Central Hospital of Weifang, Weifang, China
| | - Peng Shi
- No. 2 Department of Neurology, Yan Tai Yeda Hospital, Yantai, China
| |
Collapse
|
29
|
Kandlur A, Satyamoorthy K, Gangadharan G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front Mol Neurosci 2020; 13:41. [PMID: 32256315 PMCID: PMC7093495 DOI: 10.3389/fnmol.2020.00041] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Brain aging is the critical and common factor among several neurodegenerative disorders and dementia. Cellular, biochemical and molecular studies have shown intimate links between oxidative stress and cognitive dysfunction during aging and age-associated neuronal diseases. Brain aging is accompanied by oxidative damage of nuclear as well as mitochondrial DNA, and diminished repair. Recent studies have reported epigenetic alterations during aging of the brain which involves reactive oxygen species (ROS) that regulates various systems through distinct mechanisms. However, there are studies which depict differing roles of reactive oxidant species as a major factor during aging. In this review, we describe the evidence to show how oxidative stress is intricately linked to age-associated cognitive decline. The review will primarily focus on implications of age-associated oxidative damage on learning and memory, and the cellular events, with special emphasis on associated epigenetic machinery. A comprehensive understanding of these mechanisms may provide a perspective on the development of potential therapeutic targets within the oxidative system.
Collapse
Affiliation(s)
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
30
|
Tao WY, Yu LJ, Jiang S, Cao X, Chen J, Bao XY, Li F, Xu Y, Zhu XL. Neuroprotective effects of ZL006 in Aβ 1-42-treated neuronal cells. Neural Regen Res 2020; 15:2296-2305. [PMID: 32594052 PMCID: PMC7749460 DOI: 10.4103/1673-5374.285006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aβ1–42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aβ1–42 or NH3•H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aβ1–42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aβ1–42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aβ1–42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aβ1–42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Su Jiang
- Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc'h P. A role for SUMOylation in the Formation and Cellular Localization of TDP-43 Aggregates in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 57:1361-1373. [PMID: 31728929 DOI: 10.1007/s12035-019-01810-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
In amyotrophic lateral sclerosis, motor neurons undergoing degeneration are characterized by the presence of cytoplasmic aggregates containing TDP-43 protein. SUMOylation, a posttranslational modification of proteins, has been previously implicated in the formation of aggregates positives for SOD1, another protein enriched in a subset of ALS patients. We show in this study that TDP-43 is also a target of SUMOylation. The inhibition of the first step of the SUMOylation process by anacardic acid significantly reduces the presence of TDP-43 aggregates and improves neuritogenesis and cell viability in vitro. Interestingly, the mutation of the unique SUMOylation site on TDP-43, using site-directed mutagenesis, modifies the intracellular localization of TDP-43 aggregates. Instead of being cytoplasmic where they are associated with toxic effects, they are located inside the nucleus. This change of localization results in improvement in cell viability and in global cellular functions. Our results implicate the SUMOylation site of TDP-43 in the formation of cytoplasmic TDP-43 aggregates, a hallmark of ALS, and thus identifies this region as a new target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Cindy Maurel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Anna A Chami
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - Christian R Andres
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| |
Collapse
|
32
|
Chen B, Dai Q, Zhang Q, Yan P, Wang A, Qu L, Jin Y, Zhang D. The relationship among occupational irradiation, DNA methylation status, and oxidative damage in interventional physicians. Medicine (Baltimore) 2019; 98:e17373. [PMID: 31574886 PMCID: PMC6775365 DOI: 10.1097/md.0000000000017373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ionizing radiation can induce deoxyribonucleic acid (DNA) methylation pattern change, and ionizing radiation-induced oxidative damage may also affect DNA methylation status. However, the influence of low-dose ionizing radiation, such as occupational radiation exposure, on DNA methylation is still controversial.By investigating the relationship between occupational radiation exposure and DNA methylation changes, we evaluated whether radiation-induced oxidative damage was related to DNA methylation alterations and then determined the relationship among occupational radiation level, DNA methylation status, and oxidative damage in interventional physicians.The study population included 117 interventional physicians and 117 controls. We measured global methylation levels of peripheral blood leukocyte DNA and expression level of DNA methyltransferase (Dnmts) and homocysteine (Hcy) in serum to assess the DNA methylation status of the body. We measured 8-hydroxy-2'-deoxyguanosine (8-OHDG) and 4-hydroxynonenal (4-HNE) levels as indices of oxidative damage. Relevance analysis between multiple indices can reflect the relationship among occupational radiation exposure, DNA methylation changes, and oxidative damage in interventional physicians.The expression levels of Dnmts, 4-HNE, and 8-OHDG in interventional physicians were higher than those in controls, while there was no statistical difference in total DNA methylation rate and expression of Hcy between interventional physicians and controls. Total cumulative personal dose equivalent in interventional physicians was positively correlated with the expression levels of Dnmts, 8-OHDG, and 4-HNE. The expression levels of 8-OHDG in interventional physicians were negatively correlated with global DNA methylation levels and positively correlated with the expression levels of Hcy.Occupational radiation exposure of interventional physicians has a certain effect on the expression of related enzymes in the process of DNA methylation, while ionizing radiation-induced oxidative damage also has a certain effect on DNA methylation. However, there was no evidence that dose burden of occupational exposure was associated to changes of DNA methylation status of interventional physicians, since it is rather unclear which differences are observed among the effects produced by radiation exposure and oxidative damage.
Collapse
Affiliation(s)
- Bin Chen
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Qi Dai
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Qun Zhang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Peng Yan
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Aihong Wang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Linyan Qu
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Yinhua Jin
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Dandan Zhang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| |
Collapse
|
33
|
Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100182] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Morris G, Berk M, Maes M, Carvalho AF, Puri BK. Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations. Mol Neurobiol 2019; 56:5866-5890. [PMID: 30685844 PMCID: PMC6614134 DOI: 10.1007/s12035-019-1498-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Severe socioeconomic deprivation (SED) and adverse childhood experiences (ACE) are significantly associated with the development in adulthood of (i) enhanced inflammatory status and/or hypothalamic-pituitary-adrenal (HPA) axis dysfunction and (ii) neurological, neuroprogressive, inflammatory and autoimmune diseases. The mechanisms by which these associations take place are detailed. The two sets of consequences are themselves strongly associated, with the first set likely contributing to the second. Mechanisms enabling bidirectional communication between the immune system and the brain are described, including complex signalling pathways facilitated by factors at the level of immune cells. Also detailed are mechanisms underpinning the association between SED, ACE and the genesis of peripheral inflammation, including epigenetic changes to immune system-related gene expression. The duration and magnitude of inflammatory responses can be influenced by genetic factors, including single nucleotide polymorphisms, and by epigenetic factors, whereby pro-inflammatory cytokines, reactive oxygen species, reactive nitrogen species and nuclear factor-κB affect gene DNA methylation and histone acetylation and also induce several microRNAs including miR-155, miR-181b-1 and miR-146a. Adult HPA axis activity is regulated by (i) genetic factors, such as glucocorticoid receptor polymorphisms; (ii) epigenetic factors affecting glucocorticoid receptor function or expression, including the methylation status of alternative promoter regions of NR3C1 and the methylation of FKBP5 and HSD11β2; (iii) chronic inflammation and chronic nitrosative and oxidative stress. Finally, it is shown how severe psychological stress adversely affects mitochondrial structure and functioning and is associated with changes in brain mitochondrial DNA copy number and transcription; mitochondria can act as couriers of childhood stress into adulthood.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
35
|
Kim HJ, Joe Y, Chen Y, Park GH, Kim UH, Chung HT. Carbon monoxide attenuates amyloidogenesis via down-regulation of NF-κB-mediated BACE1 gene expression. Aging Cell 2019; 18:e12864. [PMID: 30411846 PMCID: PMC6351829 DOI: 10.1111/acel.12864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aβ are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aβ-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aβ levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aβ production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aβ levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aβ production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aβ production and may be an effective agent for AD treatment.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Medical School; Chonbuk National University; Jeonju South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences; University of Ulsan; Ulsan South Korea
| |
Collapse
|
36
|
Ungaro C, Citrigno L, Trojsi F, Sprovieri T, Gentile G, Muglia M, Monsurrò MR, Tedeschi G, Cavallaro S, Conforti FL. ALS and CHARGE syndrome: a clinical and genetic study. Acta Neurol Belg 2018; 118:629-635. [PMID: 30317490 PMCID: PMC6244742 DOI: 10.1007/s13760-018-1029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022]
Abstract
Amyotrophic Lateral Sclerosis and CHARGE syndrome are complex neurological disorders, which never occurred together in the same family and, to date, no putative correlation between them has been described on PubMed Central. Due to our aim was to evaluate the presence of different genetic variants involved in these pathologies, we reported a clinical and genetic description of two sisters affected by these two different disorders. In the CHARGE patient, molecular analysis of the CHD7 gene revealed the c.8016G >A de novo variant in exon 37. The ALS patient had been screened negative for mutations in SOD1, TARDBP, FUS/TLS, C9orf72 and KIF5A genes. Anyway, targeted next generation sequencing analysis identified known and unknown genetic variations in 39 ALS-related genes: a total of 380 variants were reported, of which 194 in the ALS patient and 186 in the CHARGE patient. To date, although the results suggest that the occurrence of the two syndromes in the same family is co-incidental rather than based on a causative genetic variant, we could hypothesize that other factors might act as modulators in the pathogenesis of these different phenotypes.
Collapse
Affiliation(s)
- Carmine Ungaro
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Luigi Citrigno
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Francesca Trojsi
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Sprovieri
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Giulia Gentile
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Maria Muglia
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Maria Rosaria Monsurrò
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Francesca Luisa Conforti
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy.
| |
Collapse
|
37
|
Huang P, Sun J, Wang F, Luo X, Zhu H, Gu Q, Sun X, Liu T, Sun X. DNMT1 and Sp1 competitively regulate the expression of BACE1 in A2E-mediated photo-oxidative damage in RPE cells. Neurochem Int 2018; 121:59-68. [PMID: 30273642 DOI: 10.1016/j.neuint.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Numerous studies have focused on the deteriorate role of amyloid-β (Aβ) on retina, implying the potential pathogenic mechanism underlying age-related macular degeneration (AMD). However, the mechanism underlying the Aβ deposition in AMD patients remains unknown. Beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), rate-limiting enzyme for Aβ production, plays an important role in Aβ deposition in the brain. In the current study, we aimed to clarify the regulation mechanism of BACE1 and explore potential drug targets using a lipofuscinfluorophore A2E-mediated photo-oxidation model. In this model, Aβ1-40 and Aβ1-42 levels increased simultaneously with the enhanced BACE1 expression. These changes were associated with the hypomethylation of specific loci within the BACE1 gene promoter and the decreased levels of DNA methyltransferase 1 (DNMT1). Furthermore, we noticed overlapping regions of differentially methylated CpG islands and specificity protein (Sp1) binding sites within the BACE1 promoter. We employed chromatin immunoprecipitation (ChIP) assay to verify that the decreased BACE1 promoter methylation by DNMT1 enabled increased binding between Sp1 and the BACE1 promoter, which further enhanced BACE1 transcription. The inhibition of Sp1 with mithramycin A (MTM) could down-regulate the expression of BACE1 as well as alleviate the RPE barrier morphology and function impairment. Our results for the first time show the competitive regulation of BACE1 by transcription factor Sp1 and DNMT1 after photo-oxidation and confirm the potential novel protective role of MTM on RPE cells.
Collapse
Affiliation(s)
- Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China
| | - Xiangjun Sun
- School of Biology and Agriculture, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, USA; Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Shanghai Key Laboratory of Fundus Disease, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Tóthová B, Kovalská M, Kalenská D, Tomašcová A, Lehotský J. Histone Hyperacetylation as a Response to Global Brain Ischemia Associated with Hyperhomocysteinemia in Rats. Int J Mol Sci 2018; 19:E3147. [PMID: 30322095 PMCID: PMC6214033 DOI: 10.3390/ijms19103147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/13/2023] Open
Abstract
Epigenetic regulations play an important role in both normal and pathological conditions of an organism, and are influenced by various exogenous and endogenous factors. Hyperhomocysteinemia (hHcy), as a risk factor for several pathological conditions affecting the central nervous system, is supposed to alter the epigenetic signature of the given tissue, which therefore worsens the subsequent damage. To investigate the effect of hHcy in combination with ischemia-reperfusion injury (IRI) and histone acetylation, we used the hHcy animal model of global forebrain ischemia in rats. Cresyl violet staining showed massive neural disintegration in the M1 (primary motor cortex) region as well as in the CA1 (cornu ammonis 1) area of the hippocampus induced by IRI. Neural loss was significantly higher in the group with induced hHcy. Moreover, immunohistochemistry and Western blot analysis of the brain cortex showed prominent changes in the acetylation of histones H3 and H4, at lysine 9 and 12, respectively, as a result of IRI and induced hHcy. It seems that the differences in histone acetylation patterns in the cortical region have a preferred role in pathological processes induced by IRI associated with hHcy and could be considered in therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Tóthová
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Mária Kovalská
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dagmar Kalenská
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Anna Tomašcová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Ján Lehotský
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
39
|
Kang P, Zhang W, Chen X, Yi X, Song P, Chang Y, Zhang S, Gao T, Li C, Li S. TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radic Biol Med 2018; 126:259-268. [PMID: 30138713 DOI: 10.1016/j.freeradbiomed.2018.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022]
Abstract
Abnormal mitochondrial calcium accumulation plays a critical role in oxidative stress-induced apoptosis of melanocytes. Transient receptor potential cation channel subfamily M member 2 (TRPM2) is a calcium channel sensitive to oxidative stress. However, whether TRPM2 participates in melanocyte apoptosis under oxidative stress was unknown before. In the present study, we initially found that hydrogen peroxide (H2O2) induced the demethylation of the promoter region in TRPM2 gene and increased the expression of TRPM2 in normal human melanocytes (NHMs). Meanwhile, TRPM2 was overexpressed in lesional melanocytes of vitiligo that is a skin disease caused by melanocyte loss under oxidative stress. Furthermore, either TRPM2 inhibitors or TRPM2 shRNA could ameliorate H2O2-induced apoptosis, mitochondrial reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) loss in NHMs, which was similar to the effects of an anti-oxidant. More importantly, TRPM2 mediated the calcium influx into the cytoplasm and the mitochondria of NHMs exposed to H2O2, and a specific mitochondrial Ca2+ uptake inhibitor Ruthenium 360 (Ru360) could also protect NHMs from apoptosis and mitochondrial damages caused by H2O2. Taken together, our findings demonstrate that oxidative stress promotes the expression of TRPM2 and thus facilitates mitochondria-dependent apoptosis of melanocytes by increasing calcium influx. Our study indicates that TRPM2 is a potential target for protecting melanocytes against oxidative damages in vitiligo.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Xuguang Chen
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Pu Song
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China.
| | - Shuli Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an 710032, Shannxi, China.
| |
Collapse
|
40
|
Zhou L, Wang J, Guo R, Lin B, Wang XB, Huang XX, Song SJ. Discovery of dihydrobenzofuran neolignans from Rubus ideaus L. with enantioselective anti-Aβ1–42 aggregation activity. Bioorg Chem 2018; 80:64-69. [DOI: 10.1016/j.bioorg.2018.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 12/17/2022]
|
41
|
Bao X, Wu J, Kim S, LoRusso P, Li J. Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients. J Clin Pharmacol 2018; 59:20-34. [PMID: 30052267 DOI: 10.1002/jcph.1275] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to identify early circulating metabolite changes implicated in the mechanism of action of irinotecan, a DNA topoisomerase I inhibitor, in cancer patients. A liquid chromatography-tandem mass spectrometry-based targeted metabolomic platform capable of measuring 254 endogenous metabolites was applied to profile circulating metabolites in plasma samples collected pre- and post-irinotecan treatment from 13 cancer patients. To gain further mechanistic insights, metabolic profiling was also performed for the culture medium of human primary hepatocytes (HepatoCells) and 2 cancer cell lines on exposure to SN-38 (an active metabolite of irinotecan). Intracellular reactive oxygen species (ROS) was detected by dihydroethidium assay. Irinotecan induced a global metabolic change in patient plasma, as represented by elevations of circulating purine/pyrimidine nucleobases, acylcarnitines, and specific amino acid metabolites. The plasma metabolic signature was well replicated in HepatoCells medium on SN-38 exposure, whereas in cancer cell medium SN-38 induced accumulation of pyrimidine/purine nucleosides and nucleobases while having no impact on acylcarnitines and amino acid metabolites. SN-38 induced ROS in HepatoCells, but not in cancer cells. Distinct metabolite signatures of SN-38 exposure in HepatoCells medium and cancer cell medium revealed different mechanisms of drug action on hepatocytes and cancer cells. Elevations in circulating purine/pyrimidine nucleobases may stem from nucleotide degradation following irinotecan-induced DNA double-strand breaks. Accumulations of circulating acylcarnitines and specific amino acid metabolites may reflect, at least in part, irinotecan-induced mitochondrial dysfunction and oxidative stress in the liver. The plasma metabolic signature of irinotecan exposure provides early insights into irinotecan mechanism of action in patients.
Collapse
Affiliation(s)
- Xun Bao
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patricia LoRusso
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
42
|
Bik-Multanowski M, Revhaug C, Grabowska A, Dobosz A, Madetko-Talowska A, Zasada M, Saugstad OD. Hyperoxia induces epigenetic changes in newborn mice lungs. Free Radic Biol Med 2018; 121:51-56. [PMID: 29698744 DOI: 10.1016/j.freeradbiomed.2018.04.566] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 01/21/2023]
Abstract
Supplemental oxygen exposure is a risk factor for the development of bronchopulmonary dysplasia (BPD). Reactive oxygen species may damage lung tissue, but hyperoxia also has the potential to alter genome activity via changes in DNA methylation. Understanding the epigenetic potential of hyperoxia would enable further improvement of the therapeutic strategies for BPD. Here we aimed to identify hyperoxia-related alterations in DNA methylation, which could affect the activity of crucial genetic pathways involved in the development of hyperoxic lung injury. Newborn mice (n = 24) were randomized to hyperoxia (85% O2) or normoxia groups for 14 days, followed by normoxia for the subsequent 14 days. The mice were sacrificed on day 28, and lung tissue was analyzed using microarrays developed for the assessment of genome methylation and expression profiles. The mean DNA methylation level was higher in the hyperoxia group than the normoxia group. The analysis of specific DNA fragments revealed hypermethylation of > 1000 gene promoters in the hyperoxia group, confirming the presence of the DNA-hypermethylation effect of hyperoxia. Further analysis showed significant enrichment of the TGF-β signaling pathway (p = 0.0013). The hypermethylated genes included Tgfbr1, Crebbp, and Creb1, which play central roles in the TGF-β signaling pathway and cell cycle regulation. Genome expression analysis revealed in the hyperoxia group complementary downregulation of genes that are crucial for cell cycle regulation (Crebbp, Smad2, and Smad3). These results suggest the involvement of the methylation of TGF-β pathway genes in lung tissue reaction to hyperoxia. The data also suggest that hyperoxia may be a programming factor in newborn mice.
Collapse
Affiliation(s)
- Miroslaw Bik-Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, ul. Wielicka 265, 30-663 Krakow, Poland.
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo and Oslo University Hospital, Norway
| | - Agnieszka Grabowska
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, ul. Wielicka 265, 30-663 Krakow, Poland
| | - Artur Dobosz
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, ul. Wielicka 265, 30-663 Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, ul. Wielicka 265, 30-663 Krakow, Poland
| | - Magdalena Zasada
- Department of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo and Oslo University Hospital, Norway
| |
Collapse
|
43
|
Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3740461. [PMID: 29707568 PMCID: PMC5863339 DOI: 10.1155/2018/3740461] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are hereditary or sporadic conditions that result in the progressive loss of the structure and function of neurons as well as neuronal death. Although a range of diseases lie under this umbrella term, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases that affect a large population around the globe. Alzheimer's disease is characterized by the abnormal accumulation of extracellular amyloid-β plaques and intraneuronal neurofibrillary tangles in brain regions and manifests as a type of dementia in aged individuals that results in memory loss, multiple cognitive abnormalities, and intellectual disabilities that interfere with quality of life. Since the discovery of AD, a wealth of new information has emerged that delineates the causes, mechanisms of disease, and potential therapeutic agents, but an effective remedy to cure the diseases has not been identified yet. This could be because of the complexity of the disease process, as it involves various contributing factors that include environmental factors and genetic predispositions. This review summarizes the current understanding on neurodegenerative mechanisms that lead to the emergence of the pathology of AD.
Collapse
|
44
|
Lv C, Yuan X, Zeng HW, Liu RH, Zhang WD. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells. Eur J Pharmacol 2017; 815:487-494. [DOI: 10.1016/j.ejphar.2017.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
|
45
|
Wang YX, Ren Q, Yan ZY, Wang W, Zhao L, Bai M, Wang XB, Huang XX, Song SJ. Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorg Med Chem Lett 2017; 27:4823-4827. [DOI: 10.1016/j.bmcl.2017.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022]
|
46
|
Yang J, Yang Z, Wang X, Sun M, Wang Y, Wang X. CpG demethylation in the neurotoxicity of 1-methyl-4-phenylpyridinium might mediate transcriptional up-regulation of α-synuclein in SH-SY5Y cells. Neurosci Lett 2017; 659:124-132. [PMID: 28807729 DOI: 10.1016/j.neulet.2017.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/10/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022]
Abstract
The accumulation of α-synuclein is the primary pathological hallmark of Parkinson's disease (PD). In PD patients, CpG demethylation of intron-1 has been reported to be associated with α-synuclein up-regulation. Environmental factor, for example neurotoxin, is a major etiological risk factor in PD pathogenesis. However, the role of CpG methylation in neurotoxin-induced PD has not been addressed completely yet. To explore CpG methylation associating with α-synuclein transcription and its underlying mechanisms in the neurotoxin-induced PD pathology, human neuroblastoma SH-SY5Y cells were treated with neurotoxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Results showed that MPP+ induced demethylation of the whole length of the CpG island around SNCA promoter, and both 6-OHDA and MPP+ resulted in up-regulation of SNCA transcription. The CpG demethylation around promoter resulted in up-regulation of SNCA transcriptional activity. In addition, 6-OHDA and MPP+ induced the reduced levels of DNA methyltransferase (DNMT) 3a and DNMT3b but not DNMT1. These data suggested that CpG demethylation was induced by MPP+ and might mediate up-regulation of SNCA transcription in neurotoxin-induced PD. And down-regulation of both DNMT3a and DNMT3b, but not DNMT1, might contribute to CpG demethylation of the SNCA promoter.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhaofei Yang
- Department of Neurobiology, Capital Medical University, Beijing, China; Center for Clinical Research on Neurological Diseases, 1st Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xuan Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Min Sun
- Department of Neurobiology, Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China
| | - Yong Wang
- Department of Physiology, Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China.
| | - Xiaomin Wang
- Department of Neurobiology, Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China; Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Beijing, China.
| |
Collapse
|
47
|
Zhou L, Lou LL, Wang W, Lin B, Chen JN, Wang XB, Huang XX, Song SJ. Enantiomeric 8-O-4′ type neolignans from red raspberry as potential inhibitors of β-amyloid aggregation. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
48
|
Eckl PM, Bresgen N. Genotoxicity of lipid oxidation compounds. Free Radic Biol Med 2017; 111:244-252. [PMID: 28167130 DOI: 10.1016/j.freeradbiomed.2017.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
Lipid peroxidation, the oxidative degradation of membrane lipids by reactive oxygen species generates a large variety of breakdown products such as alkanes, aldehydes, ketones, alcohols, furans and others. Due to their reactivity aldehydes (alkanals, 2-alkenals, 2,4-alkadienals, 4-hydroxyalkenals) received a lot of attention, in particular because they can diffuse from the site of formation and interact with proteins and nucleic acids thus acting as second toxic messengers. The major aldehydic peroxidation product of membrane lipids is 4-hydroxynonenal (HNE). Since HNE and other 4-hydroxyalkenals are strong alkylating agents they have therefore been considered to be the biologically most important peroxidation products. Although initially research focused on the toxicological potential of these compounds it is now well known that they play also a crucial role in cell signaling under physiological and pathophysiological conditions. Thus, it is obvious that the biological effects will be determined by the intracellular concentrations which can trigger adaptation, DNA damage and cell death. This review will not cover all these aspects but will concentrate on the genotoxic properties of selected lipid oxidation products important in the context of pathophysiological developments together with a chapter on epigenetic modifications.
Collapse
Affiliation(s)
- Peter M Eckl
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria.
| | - Nikolaus Bresgen
- Department of Cell Biology and Physiology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
| |
Collapse
|
49
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
50
|
Zhong J, Ji L, Chen H, Li X, Zhang J, Wang X, Wu W, Xu Y, Huang F, Cai W, Sun ZS. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress. Int J Biol Sci 2017; 13:923-934. [PMID: 28808424 PMCID: PMC5555109 DOI: 10.7150/ijbs.17260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/28/2017] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.
Collapse
Affiliation(s)
- Jianing Zhong
- The Science Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Liying Ji
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Huiqian Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian'an Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Xingxing Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Weilin Wu
- The Science Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Ying Xu
- The Science Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Fei Huang
- The Science Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|