1
|
Wu Z, Ye L, Yuan N, Che Ajuyo NM, Xiao Z, Liu L, Chen Z, Pei Y, Min Y, Wang D. A Molecular Integrative Study on the Inhibitory Effects of WRR and ERW on Amyloid β Peptide (1-42) Polymerization and Cell Toxicity. Polymers (Basel) 2023; 15:4356. [PMID: 38006082 PMCID: PMC10674201 DOI: 10.3390/polym15224356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the main pathological characteristic of AD is the deposition of Aβ42 in the brain. Inhibition of Aβ42 polymerization is one of the important research directions. Due to the pathological complexity of Alzheimer's disease, studies on Aβ42 polymerization inhibitors have not made significant progress worldwide. Using an independently constructed structure database of oligopeptides, in this study, molecular docking, umbrella sampling analysis of free energy, ThT fluorescence detection of Aβ42 polymerization, transmission electron microscopy, and flow cytometry detection of reactive oxygen species (ROS) and apoptosis were performed to screen tripeptides and pentapeptides that inhibit polymerization. It was found that two tripeptides, i.e., WRR and ERW, bind stably to the core of Aβ42 polymerization in the molecular dynamics analysis, and they significantly inhibited the aggregation of Aβ42 and reduced their cell toxicity in vitro.
Collapse
Affiliation(s)
- Zhongyun Wu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lianmeng Ye
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Nan Yuan
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Nuela Manka’a Che Ajuyo
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Liangwang Liu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zuqian Chen
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
| | - Yi Min
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Qin Q, Yin Y, Wang Y, Lu Y, Tang Y, Jia J. Gene mutations associated with early onset familial Alzheimer's disease in China: An overview and current status. Mol Genet Genomic Med 2020; 8:e1443. [PMID: 32767553 PMCID: PMC7549583 DOI: 10.1002/mgg3.1443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations of three causative genes, namely presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP), have been identified as the major causes of early-onset familial Alzheimer's disease (EOFAD). The prevalence of causative gene mutations in patients with EOFAD has been reported in previous studies worldwide but remains unclear in China. The patients with these known mutations always show considerable clinical phenotypic variability. However, to date, there have been no detailed descriptions of the clinical phenotypes associated with these Chinese EOFAD mutations. Thus, the aim of this study was to describe all of the known mutations in three EOFAD causative genes and genotype-phenotype correlations in Chinese patients with EOFAD. METHOD We systematically searched the PubMed, MEDLINE, CNKI, VIP, and WAN-FANG databases to find Chinese EOFAD mutations in reports from inception through May 2020. RESULT We identified 31 studies reporting mutations of three causative genes in China. 10 mutations in APP gene, 27 mutations in PSEN1 gene and six mutations in PSEN2 were discovered in Chinese EOFAD. This review summarized all these probably pathogenic mutations as well as its clinical features. To the best of our knowledge, this is the first systemic review of causative gene mutations in patients with EOFAD in China. CONCLUSION The analysis of the genetic and clinical phenotype correlations in this review supports the idea that the clinical phenotype might be influenced by specific genetic defects. It also suggests genetic testing and genotype-phenotype correlations are important for the accurate diagnosis and for understanding disease-associated pathways and might also improve disease therapy and prevention.
Collapse
Affiliation(s)
- Qi Qin
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yunsi Yin
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yan Wang
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuanyuan Lu
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yi Tang
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jianping Jia
- Innovation Center for Neurological DisordersDepartment of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersBeijingChina
- Clinical Center for Neurodegenerative Disease and Memory ImpairmentCapital Medical UniversityBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
3
|
Zhou J, Chen Y, Meng F, Zhang K, Liu X, Peng G. Presenilin 1 and APP Gene Mutations in Early-Onset AD Families from a Southeast Region of China. Curr Alzheimer Res 2020; 17:540-546. [PMID: 32579498 DOI: 10.2174/1567205017666200624195809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Early-Onset Familial Alzheimer's Disease (EOFAD) has been reported to be associated with Presenilin 1 (PSEN1), Presenilin 2 (PSEN2), and Amyloid Precursor Protein (APP) genes. The spectrum of mutations in Chinese patients with EOFAD was rarely investigated. OBJECTIVE To investigate the spectrum of mutations in patients with EOFAD in Chinese population. METHODS We performed whole-exome sequencing and described relevant clinical features in a total of 67 subjects from 3 families with EOFAD. RESULTS A splice mutation (p.S290C) in PSEN1 and a missense mutation (p.V717I) in APP were identified. CONCLUSION The variant p. S290C (c.869-2>G) in PSEN1 in Chinese EOAD family revealed different clinical phenotypes when compared with that of Europeans.
Collapse
Affiliation(s)
- Jiajia Zhou
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
The Genetics of Alzheimer's Disease in the Chinese Population. Int J Mol Sci 2020; 21:ijms21072381. [PMID: 32235595 PMCID: PMC7178026 DOI: 10.3390/ijms21072381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. In China, the number of AD patients is growing rapidly, which poses a considerable burden on society and families. In recent years, through the advancement of genome-wide association studies, second-generation gene sequencing technology, and their application in AD genetic research, more genetic loci associated with the risk for AD have been discovered, including KCNJ15, TREM2, and GCH1, which provides new ideas for the etiology and treatment of AD. This review summarizes three early-onset AD causative genes (APP, PSEN1, and PSEN2) and some late-onset AD susceptibility genes and their mutation sites newly discovered in China, and briefly introduces the potential mechanisms of these genetic susceptibilities in the pathogenesis of AD, which would help in understanding the genetic mechanisms underlying this devastating disease.
Collapse
|
5
|
Mereuta L, Asandei A, Schiopu I, Park Y, Luchian T. Nanopore-Assisted, Sequence-Specific Detection, and Single-Molecule Hybridization Analysis of Short, Single-Stranded DNAs. Anal Chem 2019; 91:8630-8637. [PMID: 31194518 DOI: 10.1021/acs.analchem.9b02080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report here on the ability of the α-hemolysin (α-HL) nanopore to achieve label-free, selective, and real-time detection of 15 nt long ssDNA fragments in solution, by exploiting their hybridization with freely added, polycationic peptides-functionalized PNAs. At the core of our work lies the paradigm that when PNAs and ssDNA are mixed together, the bulk concentration of free PNA decreases, depending upon the (mis)match degree between complementary strands and their relative concentrations. We demonstrate that the ssDNA sensing principle and throughput of the method are determined by the rate at which nonhybridized, polycationic peptides-functionalized PNA molecules arrive at the α-HL's vestibule entrance and thread into the nanopore. We found that with the application of a 30-fold salt gradient across the nanopore, the method enhances single-molecule detection sensitivity in the nanomolar range of ssDNA concentrations. This study demonstrates that the transmembrane potential-dependent unzip of single PNA-DNA duplexes at the α-HL's β-barrel entry permits discrimination between sequences that differ by one base pair.
Collapse
Affiliation(s)
| | | | | | - Yoonkyung Park
- Department of Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM) , Chosun University , Gwangju 61452 , Republic of Korea
| | | |
Collapse
|
6
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
7
|
Mutation screening in Chinese patients with familial Alzheimer's disease by whole-exome sequencing. Neurobiol Aging 2018; 76:215.e15-215.e21. [PMID: 30598257 DOI: 10.1016/j.neurobiolaging.2018.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023]
Abstract
Familial Alzheimer's disease (FAD) is characterized by a positive family history of dementia and typically occurs at an early age with an autosomal dominant pattern of inheritance. Amyloid precursor protein (APP), presenilin1 (PSEN1), and presenilin2 (PSEN2) are the major causative genes of FAD. The spectrum of mutations in patients with FAD has been investigated extensively in the Caucasian population but rarely in the Chinese population. Here, we performed whole-exome sequencing in a total of 15 unrelated Chinese patients with FAD. Among them, 12 were found to carry missense variants in APP, PSEN1, and PSEN2. Two novel variants (APP: p.D244G, p.K687Q), 3 variants not previously associated with FAD (APP: p.T297M, p.D332G; PSEN1: p.R157S), and 7 previously reported pathogenic variants (APP: p.V717I; PSEN1: p.M139I, p.T147I, p.L173W, p.F177S, p.R269H; PSEN2: p.V139M) were identified. The novel variant APP p.K687Q was classified as likely pathogenic, and the other 4 variants (APP: p.D244G, p.T297M, p.D332G; PSEN1: p.R157S) were classified as uncertain significance. Therefore, APP, PSEN1, and PSEN2 mutations account for 2 (25.0%), 5 (62.5%), and 1 (12.5%) of the genotyped cases positive for mutations, respectively. Furthermore, the genotype-phenotype correlations were described. Our findings broaden the genetic spectrum of FAD with APP, PSEN1, and PSEN2 variants.
Collapse
|
8
|
Zhang G, Xie Y, Wang W, Feng X, Jia J. Clinical characterization of an APP mutation (V717I) in five Han Chinese families with early-onset Alzheimer's disease. J Neurol Sci 2016; 372:379-386. [PMID: 27838006 DOI: 10.1016/j.jns.2016.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
The missense mutation V717I in amyloid precursor protein (APP) gene has been reported in many early-onset familial Alzheimer's disease (EOFAD) families. However, no detailed clinical picture regarding this mutation has ever been described for Chinese EOFAD. We investigate the age at onset (AAO), initial clinical features and non-cognitive neurological symptoms in 34 affected subjects from five Han Chinese EOFAD families with the APPV717I mutation to characterize the clinical phenotype. The AAO was 54.7±4.9years (n=34), with the APOE ɛ4 allele correlating with a decreased AAO. Prominent early affective symptoms, executive dysfunction and disorientation at onset were exhibited in 26 (76.5%), 18 (52.9%) and 16 (47%) cases, respectively. Spastic paraparesis and cerebellar ataxia occurred frequently in 13 (38.2%) and 12 (35.3%) cases, respectively, during the late stages of disease. The specific clinical phenotype of the APPV717I mutation for Chinese families is characterized by prominent early affective symptoms, executive dysfunction and disorientation as well as frequent late spastic paraparesis and cerebellar ataxia as compared to Western reports. We conclude that ethnic differences, environment or additional unknown factors may challenge the homogeneity of EOFAD with identical APP mutations.
Collapse
Affiliation(s)
- Guili Zhang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, PR China
| | - Yunyan Xie
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, PR China
| | - Wei Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, PR China
| | - Xueyan Feng
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, PR China
| | - Jianping Jia
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, PR China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China; Key Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, PR China.
| |
Collapse
|
9
|
Morin TJ, Shropshire T, Liu X, Briggs K, Huynh C, Tabard-Cossa V, Wang H, Dunbar WB. Nanopore-Based Target Sequence Detection. PLoS One 2016; 11:e0154426. [PMID: 27149679 PMCID: PMC4858282 DOI: 10.1371/journal.pone.0154426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
The promise of portable diagnostic devices relies on three basic requirements: comparable sensitivity to established platforms, inexpensive manufacturing and cost of operations, and the ability to survive rugged field conditions. Solid state nanopores can meet all these requirements, but to achieve high manufacturing yields at low costs, assays must be tolerant to fabrication imperfections and to nanopore enlargement during operation. This paper presents a model for molecular engineering techniques that meets these goals with the aim of detecting target sequences within DNA. In contrast to methods that require precise geometries, we demonstrate detection using a range of pore geometries. As a result, our assay model tolerates any pore-forming method and in-situ pore enlargement. Using peptide nucleic acid (PNA) probes modified for conjugation with synthetic bulk-adding molecules, pores ranging 15-50 nm in diameter are shown to detect individual PNA-bound DNA. Detection of the CFTRΔF508 gene mutation, a codon deletion responsible for ∼66% of all cystic fibrosis chromosomes, is demonstrated with a 26-36 nm pore size range by using a size-enhanced PNA probe. A mathematical framework for assessing the statistical significance of detection is also presented.
Collapse
Affiliation(s)
- Trevor J. Morin
- Two Pore Guys Inc., Santa Cruz, CA, United States of America
| | | | - Xu Liu
- Two Pore Guys Inc., Santa Cruz, CA, United States of America
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ontario, Canada
| | - Cindy Huynh
- Two Pore Guys Inc., Santa Cruz, CA, United States of America
| | | | - Hongyun Wang
- Two Pore Guys Inc., Santa Cruz, CA, United States of America
- Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - William B. Dunbar
- Two Pore Guys Inc., Santa Cruz, CA, United States of America
- Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Shea YF, Chu LW, Chan AOK, Ha J, Li Y, Song YQ. A systematic review of familial Alzheimer's disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc 2015; 115:67-75. [PMID: 26337232 DOI: 10.1016/j.jfma.2015.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
There are great diversities of clinical phenotypes among the various familial Alzheimer's disease (FAD) families. We aimed to systematically review all the previously reported cases of FAD and to perform comparisons between Asian and white patients. In this regard, we collected individual-level data from 658 pedigrees. We found that patients with presenilin 1 (PSEN1) mutations had the earliest age of onset (AOO; 43.3 ± 8.6 years, p < 0.001) and were more commonly affected by seizures, spastic paraparesis, myoclonus, and cerebellar signs (p < 0.001, p < 0.001, p = 0.003, and p = 0.002, respectively). Patients with PSEN2 mutations have a delayed AOO with longest disease duration and presented more frequently with disorientation (p = 0.03). Patients with amyloid precursor protein (APP) mutations presented more frequently with aggression (p = 0.02) and those with APP duplication presented more frequently with apraxia (p = 0.03). PSEN1 mutations before codon 200 had an earlier AOO than those having mutations after codon 200 (41.4 ± 8.0 years vs. 44.7 ± 8.7 years, p < 0.001). Because 42.9% of the mutations reported are novel, the mutation spectrum and clinical features in Asian FAD families could be different from that of whites. Asian patients with PSEN1 mutations presented more frequently with disorientation (p = 0.02) and personality change (p = 0.01) but less frequently with atypical clinical features. Asian patients with APP mutations presented less frequently with aphasia (p = 0.02). Thus, clinical features could be modified by underlying mutations, and Asian FAD patients may have different clinical features when compared with whites.
Collapse
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region.
| | - Leung-Wing Chu
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region; Alzheimer's Disease Research Network, Strategic Research Theme on Aging, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong Special Administrative Region
| | - Angel On-Kei Chan
- Division of Clinical Biochemistry, Department of Pathology and Clinical Biochemistry, Queen Mary Hospital, Hong Kong, Hong Kong Special Administrative Region
| | - Joyce Ha
- Department of Medicine, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Yan Li
- Center for Transport Phenomena, Energy Research Institute of Shandong Academy of Sciences, Jinan, People's Republic of China
| | - You-Qiang Song
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
11
|
Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer's disease: a meta-analysis. Neurol Sci 2015; 36:1881-8. [PMID: 26037549 DOI: 10.1007/s10072-015-2274-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Recent studies show that heterozygous variant of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of Alzheimer's disease (AD) but with inconclusive results. Here, we conducted a meta-analysis to summarize and clarify the association between TREM2 variants and AD, and examined the relationship between TREM2 genetic variant and the etiology of AD. Relevant case-control studies were retrieved and collected according to established inclusion criteria. Odds ratio (OR) and 95% confidence interval (95% CI) were used to estimate the associations between three TREM2 variants (rs75932628, rs104894002, and rs143332484) and AD. In overall meta-analysis, the summary ORs for rs75932628, rs104894002, and rs143332484 were 2.70 [95% CI: 2.24, 3.24; P < 0.001], 7.21 (95% CI: 1.28, 40.78; P = 0.025), and 1.65 (95% CI: 1.24, 2.21; P = 0.001), respectively, indicating that the TREM2 rs75932628, rs104894002, and rs143332484 may contribute to AD risk. However, sensitivity analysis showed that the results of rs104894002 and rs143332484 should be interpreted with caution, and larger sample size, particularly in different ethnicities, are needed to validate the two variants. The current meta-analysis demonstrates that TREM2 is a candidate gene for AD susceptibility, and TREM2 variant rs75932628 may be a risk factor for AD.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Qiu T, Liu Q, Chen YX, Zhao YF, Li YM. Aβ42 and Aβ40: similarities and differences. J Pept Sci 2015; 21:522-9. [PMID: 26018760 DOI: 10.1002/psc.2789] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023]
Abstract
The abnormal accumulation of amyloid-β (Aβ) peptide in the brain is one of the most important hallmarks of Alzheimer's disease. Aβ is an aggregation-prone and toxic polypeptide with 39-43 residues, derived from the amyloid precursor protein proteolysis process. According to the amyloid hypothesis, abnormal accumulation of Aβ in the brain is the primary influence driving Alzheimer's disease pathologies. Among all kinds of Aβ isoforms, Aβ40 and Aβ42 are believed to be the most important ones. Although these two kinds of Aβ differ only in two amino acid residues, recent studies show that they differ significantly in their metabolism, physiological functions, toxicities, and aggregation mechanism. In this review, we mainly summarize the similarities and differences between Aβ42 and Aβ40, recent studies on selective inhibitors as well as probes will also be mentioned.
Collapse
Affiliation(s)
- Tian Qiu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qian Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
13
|
Shea YF, Chu LW, Chan AOK, Kwan JSK. Delayed diagnosis of an old Chinese woman with familial Alzheimer's disease. J Formos Med Assoc 2015; 114:1020-1. [PMID: 25634826 DOI: 10.1016/j.jfma.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/10/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yat-Fung Shea
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region.
| | - Leung-Wing Chu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Angel On-Kei Chan
- Division of Clinical Biochemistry, Department of Pathology and Clinical Biochemistry, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Joseph Shiu-Kwong Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
14
|
Jiang HY, Li GD, Dai SX, Bi R, Zhang DF, Li ZF, Xu XF, Zhou TC, Yu L, Yao YG. Identification of PSEN1 mutations p.M233L and p.R352C in Han Chinese families with early-onset familial Alzheimer's disease. Neurobiol Aging 2014; 36:1602.e3-6. [PMID: 25595498 DOI: 10.1016/j.neurobiolaging.2014.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/28/2014] [Accepted: 11/15/2014] [Indexed: 11/19/2022]
Abstract
Early-onset familial Alzheimer's disease (EOFAD) is characterized by the onset of dementia symptoms before 65 years, positive family history, high genetic predisposition, and an autosomal dominant inheritance. We aimed to investigate mutations and to characterize phenotypes in Chinese EOFAD families. Detailed clinical assessments and genetic screening for mutations in the presenilin 1 (PSEN1), presenilin 2, amyloid precursor protein, and APOE genes were carried out in 4 EOFAD families. Two PSEN1 mutations (p.R352C and p.M233L) were identified in 2 EOFAD families, respectively. Mutation p.M233L was associated with prominent very early onset, rapidly progressive dementia, and neurologic symptoms, whereas p.R352C was associated with a progressive dementia, psychiatric syndrome, and chronic disease course. Both mutations are predicted to be pathogenic. Our results showed that mutations in PSEN1 gene might be common in Chinese EOFAD families.
Collapse
Affiliation(s)
- Hong-Yan Jiang
- Laboratory for Conservation and Utilization of Bioresource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China; Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guo-Dong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, P.R. China
| | - Shao-Xing Dai
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, P.R. China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, P.R. China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, P.R. China
| | - Zong-Fang Li
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiu-Feng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tai-Cheng Zhou
- Laboratory for Conservation and Utilization of Bioresource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bioresource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, P.R. China; CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|