1
|
Mori K, Ikeda M. Biological basis and psychiatric symptoms in frontotemporal dementia. Psychiatry Clin Neurosci 2022; 76:351-360. [PMID: 35557018 DOI: 10.1111/pcn.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Frontotemporal dementia is a neurodegenerative disease characterized by focal degeneration of the frontal and temporal lobes, clinically presenting with disinhibited behavior, personality changes, progressive non-fluent aphasia and/or impaired semantic memory. Research progress has been made in re-organizing the clinical concept of frontotemporal dementia and neuropathological classification based on multiple accumulating proteins. Alongside this progress a list of genetic mutations or variants that are causative or increase the risk of frontotemporal dementia have been identified and some of these gene products are extensively studied. However, there are still a lot of points that need to be overcome, including lack of specific diagnostic biomarker which enable antemortem diagnosis of underlying neurodegenerative process, and lack of disease modifying therapy which could prevent disease progression. Early and precise diagnosis of frontotemporal dementia is urgently required. In this context, how to define prodromal frontotemporal dementia and early differential diagnosis from primary psychiatric disorders are also important issues. In this review we will summarize and discuss current understanding of biological basis and psychiatric symptoms in frontotemporal dementia.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Abstract
The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression.
Collapse
Affiliation(s)
- Rubika Balendra
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. .,UK Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK.
| |
Collapse
|
3
|
Solomon DA, Stepto A, Au WH, Adachi Y, Diaper DC, Hall R, Rekhi A, Boudi A, Tziortzouda P, Lee YB, Smith B, Bridi JC, Spinelli G, Dearlove J, Humphrey DM, Gallo JM, Troakes C, Fanto M, Soller M, Rogelj B, Parsons RB, Shaw CE, Hortobágyi T, Hirth F. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain 2019; 141:2908-2924. [PMID: 30239641 PMCID: PMC6158706 DOI: 10.1093/brain/awy241] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.
Collapse
Affiliation(s)
- Daniel A Solomon
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Alan Stepto
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Wing Hei Au
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Yoshitsugu Adachi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Danielle C Diaper
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Rachel Hall
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Anjeet Rekhi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Adel Boudi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Paraskevi Tziortzouda
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Youn-Bok Lee
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bradley Smith
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jessika C Bridi
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Greta Spinelli
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jonah Dearlove
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Dickon M Humphrey
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Jean-Marc Gallo
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Claire Troakes
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Manolis Fanto
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology and Biomedical Research Institute BRIS and University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Richard B Parsons
- King's College London, School of Cancer Studies and Pharmaceutical Sciences, London, UK
| | - Christopher E Shaw
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Departments of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary.,King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Frank Hirth
- King's College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
4
|
Sakae N, Bieniek KF, Zhang YJ, Ross K, Gendron TF, Murray ME, Rademakers R, Petrucelli L, Dickson DW. Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol Commun 2018; 6:63. [PMID: 30029693 PMCID: PMC6054740 DOI: 10.1186/s40478-018-0564-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is heterogeneous in clinical presentation, neuropathological characteristics and genetics. An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of both FTLD and motor neuron disease (MND). Dipeptide repeat polymers (DPR) are generated through repeat-associated non-ATG translation, and they aggregate in neuronal inclusions with a distribution distinct from that of TDP-43 pathology. Recent studies from animal and cell culture models suggest that DPR might be toxic, but that toxicity may differ for specific DPR. Arginine containing DPR (poly-GR and poly-PR) have the greatest toxicity and are less frequent than other DPR (poly-GP, poly-GA). A unique feature of arginine-containing DPR is their potential for post-translational modification by methyl-transferases, which produces methylarginine DPR. In this report, we explored the relationship of DPR and methylarginine to markers of neurodegeneration using quantitative digital microscopic methods in 40 patients with C9ORF72 mutations and one of three different clinicopathologic phenotypes, FTLD, FTLD-MND or MND. We find that density and distribution of poly-GR inclusions are different from poly-GA and poly-GP inclusions. We also demonstrate colocalization of poly-GR with asymmetrical dimethylarginine (aDMA) immunoreactivity in regions with neurodegeneration. Differences in aDMA were also noted by clinical phenotype. FTLD-MND had the highest burden of poly-GR pathology compared to FTLD and MND, while FTLD-MND had higher burden of aDMA than FTLD. The results suggest that poly-GR pathology is associated with toxicity and neurodegeneration. It remains to be determined if dimethylarginine modification of poly-GR could contribute to its toxicity.
Collapse
Affiliation(s)
- Nobutaka Sakae
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Kelly Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Abstract
Frontotemporal dementia (FTD) is a heterogeneous disorder with distinct clinical phenotypes associated with multiple neuropathologic entities. Presently, the term FTD encompasses clinical disorders that include changes in behavior, language, executive control, and often motor symptoms. The core FTD spectrum disorders include behavioral variant FTD, nonfluent/agrammatic variant primary progressive aphasia, and semantic variant PPA. Related FTD disorders include frontotemporal dementia with motor neuron disease, progressive supranuclear palsy syndrome, and corticobasal syndrome. In this article, the authors discuss the clinical presentation, diagnostic criteria, neuropathology, genetics, and treatments of these disorders.
Collapse
Affiliation(s)
- Nicholas T Olney
- Department of Neurology, UCSF Memory and Aging Center, San Francisco, CA, USA.
| | - Salvatore Spina
- Department of Neurology, UCSF Memory and Aging Center, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Memory and Aging Center, San Francisco, CA, USA; UCSF School of Medicine, San Francisco, CA, USA
| |
Collapse
|
6
|
Richards RI, Robertson SA, O'Keefe LV, Fornarino D, Scott A, Lardelli M, Baune BT. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease. Front Neurosci 2016; 10:193. [PMID: 27242399 PMCID: PMC4862319 DOI: 10.3389/fnins.2016.00193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an "intelligent system," in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate-mediated damage in neural tissues, and renders innate surveillance mediated cell death a plausible common pathogenic pathway responsible for neurodegenerative diseases, in both familial and sporadic forms. Here we have assembled evidence in favor of the hypothesis that neurodegenerative disease is the cumulative result of chronic activation of the innate surveillance pathway, triggered by endogenous or environmental danger or damage associated molecular patterns in a progressively expanding cascade of inflammation, tissue damage and cell death.
Collapse
Affiliation(s)
- Robert I Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Sarah A Robertson
- School of Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide Adelaide, SA, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Dani Fornarino
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Andrew Scott
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide Adelaide, SA, Australia
| | - Bernhard T Baune
- School of Medicine, Discipline of Psychiatry, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
7
|
O'Rourke JG, Bogdanik L, Muhammad AKMG, Gendron TF, Kim KJ, Austin A, Cady J, Liu EY, Zarrow J, Grant S, Ho R, Bell S, Carmona S, Simpkinson M, Lall D, Wu K, Daughrity L, Dickson DW, Harms MB, Petrucelli L, Lee EB, Lutz CM, Baloh RH. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron 2016; 88:892-901. [PMID: 26637796 DOI: 10.1016/j.neuron.2015.10.027] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/16/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.
Collapse
Affiliation(s)
- Jacqueline G O'Rourke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Laurent Bogdanik
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - A K M G Muhammad
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Kevin J Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Andrew Austin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Janet Cady
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Elaine Y Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonah Zarrow
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Sharday Grant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Shaughn Bell
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Sharon Carmona
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Megan Simpkinson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Deepti Lall
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kathryn Wu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Matthew B Harms
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
8
|
An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr Opin Neurobiol 2016; 36:99-106. [DOI: 10.1016/j.conb.2015.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
|
9
|
Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 2015; 130:537-55. [PMID: 26085200 PMCID: PMC4575390 DOI: 10.1007/s00401-015-1450-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.
Collapse
|
10
|
Small deletion in C9orf72 hides a proportion of expansion carriers in FTLD. Neurobiol Aging 2014; 36:1601.e1-5. [PMID: 25595499 PMCID: PMC4353501 DOI: 10.1016/j.neurobiolaging.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Frontotemporal lobar degeneration is a highly familial disease and the most common known genetic cause is the repeat expansion mutation in the gene C9orf72. We have identified 2 brothers with an expansion mutation in C9orf72 using Southern blotting that is undetectable using repeat-primed polymerase chain reaction. Sequencing using high concentrations of DNA denaturants of a bacterial artificial chromosome clone obtained from one of the brothers identified a 10-base pair deletion adjacent to the expansion that presumably confers strong secondary structure that interferes with the genotyping. Using an alternative method, we have identified missed expansion carriers in our cohort, and this number has increased by approximately 25%. This observation has important implications for patients undergoing genetic testing for C9orf72.
Collapse
|